Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(20)2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37892102

RESUMO

BACKGROUND: Machine learning can analyze vast amounts of data and make predictions for events in the future. Our group created machine learning models for vital sign predictions. To transport the information of these predictions without numbers and numerical values and make them easily usable for human caregivers, we aimed to integrate them into the Philips Visual-Patient-avatar, an avatar-based visualization of patient monitoring. METHODS: We conducted a computer-based simulation study with 70 participants in 3 European university hospitals. We validated the vital sign prediction visualizations by testing their identification by anesthesiologists and intensivists. Each prediction visualization consisted of a condition (e.g., low blood pressure) and an urgency (a visual indication of the timespan in which the condition is expected to occur). To obtain qualitative user feedback, we also conducted standardized interviews and derived statements that participants later rated in an online survey. RESULTS: The mixed logistic regression model showed 77.9% (95% CI 73.2-82.0%) correct identification of prediction visualizations (i.e., condition and urgency both correctly identified) and 93.8% (95% CI 93.7-93.8%) for conditions only (i.e., without considering urgencies). A total of 49 out of 70 participants completed the online survey. The online survey participants agreed that the prediction visualizations were fun to use (32/49, 65.3%), and that they could imagine working with them in the future (30/49, 61.2%). They also agreed that identifying the urgencies was difficult (32/49, 65.3%). CONCLUSIONS: This study found that care providers correctly identified >90% of the conditions (i.e., without considering urgencies). The accuracy of identification decreased when considering urgencies in addition to conditions. Therefore, in future development of the technology, we will focus on either only displaying conditions (without urgencies) or improving the visualizations of urgency to enhance usability for human users.

2.
Diagnostics (Basel) ; 13(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37835847

RESUMO

Blood gas analysis plays a central role in modern medicine. Advances in technology have expanded the range of available parameters and increased the complexity of their interpretation. By applying user-centered design principles, it is possible to reduce the cognitive load associated with interpreting blood gas analysis. In this international, multicenter study, we explored anesthesiologists' perspectives on Visual Blood, a novel visualization technique for presenting blood gas analysis results. We conducted interviews with participants following two computer-based simulation studies, the first utilizing virtual reality (VR) (50 participants) and the second without VR (70 participants). Employing the template approach, we identified key themes in the interview responses and formulated six statements, which were rated using Likert scales from 1 (strongly disagree) to 5 (strongly agree) in an online questionnaire. The most frequently mentioned theme was the positive usability features of Visual Blood. The online survey revealed that participants found Visual Blood to be an intuitive method for interpreting blood gas analysis (median 4, interquartile range (IQR) 4-4, p < 0.001). Participants noted that minimal training was required to effectively learn how to interpret Visual Blood (median 4, IQR 4-4, p < 0.001). However, adjustments are necessary to reduce visual overload (median 4, IQR 2-4, p < 0.001). Overall, Visual Blood received a favorable response. The strengths and weaknesses derived from these data will help optimize future versions of Visual Blood to improve the presentation of blood gas analysis results.

3.
Transfus Med Hemother ; 50(3): 245-255, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37435001

RESUMO

Background: Patient blood management (PBM) is a multidisciplinary and patient-centered treatment approach, comprising the detection and treatment of anemia, the minimization of blood loss, and the rational use of allogeneic transfusions. Pregnancy, delivery, and the puerperium are associated with increased rates of iron deficiency and anemia, which correlates with worse maternal and fetal outcomes and places pregnant women at increased risk of obstetric hemorrhage. Summary: Early screening for iron deficiency before the onset of anemia, as well as the use of oral and intravenous iron to treat iron deficiency anemia, has been shown to be beneficial. Anemia in pregnancy and the puerperium should be treated according to a staged regimen, administering either iron alone or in combination with an off-label use of human recombinant erythropoietin in selected patients. This regimen should be tailored to the needs of each individual patient. Postpartum hemorrhage (PPH) accounts for up to one-third of maternal deaths in both developing and developed countries. Bleeding complications should be anticipated and blood loss reduced by interdisciplinary preventive measures and individually tailored care. It is recommended that facilities have a PPH algorithm, primarily focusing on prevention through use of uterotonics, but also incorporating early diagnosis of the cause of bleeding, optimization of hemostatic conditions, timely administration of tranexamic acid, and integration of point-of-care tests to support the guided substitution of coagulation factors, alongside standard laboratory tests. Additionally, cell salvage has proven beneficial and should be considered for various indications in obstetrics including hematologic disturbances, as well as various forms of placental disorders. Key Message: This article reviews PBM in pregnancy, delivery, and the puerperium. The concept comprises early screening and treatment of anemia and iron deficiency, a transfusion and coagulation algorithm during delivery, as well as cell salvage.

4.
J Clin Med ; 12(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36983099

RESUMO

Artificial intelligence (AI) is predicted to play an increasingly important role in perioperative medicine in the very near future. However, little is known about what anesthesiologists know and think about AI in this context. This is important because the successful introduction of new technologies depends on the understanding and cooperation of end users. We sought to investigate how much anesthesiologists know about AI and what they think about the introduction of AI-based technologies into the clinical setting. In order to better understand what anesthesiologists think of AI, we recruited 21 anesthesiologists from 2 university hospitals for face-to-face structured interviews. The interview transcripts were subdivided sentence-by-sentence into discrete statements, and statements were then grouped into key themes. Subsequently, a survey of closed questions based on these themes was sent to 70 anesthesiologists from 3 university hospitals for rating. In the interviews, the base level of knowledge of AI was good at 86 of 90 statements (96%), although awareness of the potential applications of AI in anesthesia was poor at only 7 of 42 statements (17%). Regarding the implementation of AI in anesthesia, statements were split roughly evenly between pros (46 of 105, 44%) and cons (59 of 105, 56%). Interviewees considered that AI could usefully be used in diverse tasks such as risk stratification, the prediction of vital sign changes, or as a treatment guide. The validity of these themes was probed in a follow-up survey of 70 anesthesiologists with a response rate of 70%, which confirmed an overall positive view of AI in this group. Anesthesiologists hold a range of opinions, both positive and negative, regarding the application of AI in their field of work. Survey-based studies do not always uncover the full breadth of nuance of opinion amongst clinicians. Engagement with specific concerns, both technical and ethical, will prove important as this technology moves from research to the clinic.

5.
Bioengineering (Basel) ; 10(3)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36978684

RESUMO

Acid-base homeostasis is crucial for all physiological processes in the body and is evaluated using arterial blood gas (ABG) analysis. Screens or printouts of ABG results require the interpretation of many textual elements and numbers, which may delay intuitive comprehension. To optimise the presentation of the results for the specific strengths of human perception, we developed Visual Blood, an animated virtual model of ABG results. In this study, we compared its performance with a conventional result printout. Seventy physicians from three European university hospitals participated in a computer-based simulation study. Initially, after an educational video, we tested the participants' ability to assign individual Visual Blood visualisations to their corresponding ABG parameters. As the primary outcome, we tested caregivers' ability to correctly diagnose simulated clinical ABG scenarios with Visual Blood or conventional ABG printouts. For user feedback, participants rated their agreement with statements at the end of the study. Physicians correctly assigned 90% of the individual Visual Blood visualisations. Regarding the primary outcome, the participants made the correct diagnosis 86% of the time when using Visual Blood, compared to 68% when using the conventional ABG printout. A mixed logistic regression model showed an odds ratio for correct diagnosis of 3.4 (95%CI 2.00-5.79, p < 0.001) and an odds ratio for perceived diagnostic confidence of 1.88 (95%CI 1.67-2.11, p < 0.001) in favour of Visual Blood. A linear mixed model showed a coefficient for perceived workload of -3.2 (95%CI -3.77 to -2.64) in favour of Visual Blood. Fifty-one of seventy (73%) participants agreed or strongly agreed that Visual Blood was easy to use, and fifty-five of seventy (79%) agreed that it was fun to use. In conclusion, Visual Blood improved physicians' ability to diagnose ABG results. It also increased perceived diagnostic confidence and reduced perceived workload. This study adds to the growing body of research showing that decision-support tools developed around human cognitive abilities can streamline caregivers' decision-making and may improve patient care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...