Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 9(19): 4820-8, 2003 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-14566890

RESUMO

A new high-yield synthesis of [(PhCH(2))(2)Mg(thf)(2)] and [[(PhCH(2))CH(3)Mg(thf)](2)] via benzylpotassium has allowed a simple entry into benzylmagnesium coordination chemistry. The syntheses and X-ray crystal structures of both [(eta(2)-Me(2)NCH(2)CH(2)NMe(2))Mg(CH(2)Ph)(2)] and [eta(2)-HC[C(CH(3))NAr'](2)Mg(CH(2)Ph)(thf)] (Ar'=2,6-diisopropylphenyl) are reported. The latter beta-diketiminate complex reacts with dioxygen to provide a 1:2 mixture of dimeric benzylperoxo and benzyloxo complexes. The benzylperoxo complex [[eta(2)-HC[C(CH(3))NAr'](2)Mg(mu-eta(2):eta(1)-OOCH(2)Ph)](2)] is the first example of a structurally characterised Group 2 metal-alkylperoxo complex and contains the benzylperoxo ligands in an unusual mu-eta(2):eta(1)-coordination mode, linking the two five-coordinate magnesium centres. The O[bond]O separation in the benzylperoxo ligands is 1.44(2) A. Reaction of the benzylperoxo/benzyloxo complex mixture with further [eta(2)-HC[C(CH(3))NAr'](2)Mg(CH(2)Ph)(thf)] results in complete conversion of the benzylperoxo species into the benzyloxo complex. This reaction, therefore, establishes the cleavage of dioxygen by this system as a two-step process that involves initial oxygen insertion into the Mg[bond]CH(2)Ph bond followed by O[bond]O/Mg[bond]C sigma-bond metathesis of the resulting benzylperoxo ligand with a second Mg[bond]CH(2)Ph bond. The formation of a 1:2 mixture of the benzylperoxo and benzyloxo species indicates that the rate of the insertion is faster than that of the metathesis, and this is shown to be consistent with a radical mechanism for the insertion process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...