Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 229: 115350, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37001275

RESUMO

Peptides have gained an increasing importance in drug discovery as potential therapeutics. Discovery efforts toward finding new, efficacious peptide-based therapeutics have increased the throughput of peptide development, allowing the rapid generation of unique and pure peptide samples. However, high-throughput analysis of peptides may be still challenging and can encumber a high-throughput drug discovery campaign. We report herein a fit-for-purpose method to quantify peptide concentrations using high-throughput infrared spectroscopy (HT-IR). Through the development of this method, multiple critical method parameters were optimized including solvent composition, droplet deposition size, plate drying procedures, sample concentration, and internal standard. The relative absorbance of the amide region (1600-1750 cm-1) to the internal standard, K3Fe(CN)6 (2140 cm-1), was determined to be most effective at providing lowest interference for measuring peptide concentration. The best sample deposition was achieved by dissolving samples in a 50:50 v/v allyl alcohol/water mixture. The developed method was used on 96-well plates and analyzed at a rate of 22 min per plate. Calibration curves to measure sample concentration versus response relationship displayed sufficient linearity (R2 > 0.95). The repeatability and scope of detection was demonstrated with eighteen peptide samples that were measured with most values below 20% relative standard deviation. The linear dynamic range of the method was determined to be between 1 and 5 mg/mL. This developed HT-IR methodology could be a useful tool in peptide drug candidate lead identification and optimization processes.


Assuntos
Descoberta de Drogas , Peptídeos , Peptídeos/química , Espectrofotometria Infravermelho , Solventes/química , Água
2.
Bioorg Med Chem Lett ; 30(14): 127241, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32527543

RESUMO

The tubulysins are an emerging antibody-drug conjugate (ADC) payload that maintain potent anti-proliferative activity against cells that exhibit the multi-drug resistant (MDR) phenotype. These drugs possess a C-11 acetate known to be hydrolytically unstable in plasma, and loss of the acetate significantly attenuates cytotoxicity. Structure-activity relationship studies were undertaken to identify stable C-11 tubulysin analogues that maintain affinity for tubulin and potent cytotoxicity. After identifying several C-11 alkoxy analogues that possess comparable biological activity to tubulysin M with significantly improved plasma stability, additional analogues of both the Ile residue and N-terminal position were synthesized. These studies revealed that minor changes within the tubulin binding site of tubulysin can profoundly alter the activity of this chemotype, particularly against MDR-positive cell types.


Assuntos
Antineoplásicos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Oligopeptídeos/farmacologia , Antineoplásicos/sangue , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Oligopeptídeos/sangue , Oligopeptídeos/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...