Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 14(6): e11583, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38919646

RESUMO

Phylogenetic diversity offers critical insights into the ecological dynamics shaping species composition and ecosystem function, thereby informing conservation strategies. Despite its recognized importance in ecosystem management, the assessment of phylogenetic diversity in endangered habitats, such as vernal pools, remains limited. Vernal pools, characterized by cyclical inundation and unique plant communities, present an ideal system for investigating the interplay between ecological factors and phylogenetic structure. This study aims to characterize the phylogenetic patterns of vernal pools and their associated vegetation zones, addressing questions about taxonomic and phylogenetic community discreteness, the role of flooding as a habitat filter, the influence of invasive species on phylogenetic structure, and the impact of seasonal variation on phylogenetic diversity. I find that zones-of-vegetation exhibit high between zone taxonomic and phylogenetic beta diversity whereas each zone forms a unique cluster, suggesting that zones are taxonomically and phylogenetically discrete units. Regions of high-inundation pressure exhibit phylogenetic clustering, indicating that flooding is a habitat filter in vernal pool habitats. Competition between native species conform to the 'competitive relatedness hypothesis' and, conversely, communities dominated by invasive Eurasian grass species are phylogenetically clustered. In addition, I find that phylogenetic diversity within zones fluctuates across the spring season in response to changing water levels, precipitation, and temperature. By analyzing three pools within the Merced Vernal Pool and Grassland Reserve, this research elucidates the phylogenetic dynamics of vernal pools. The findings underscore the need for tailored conservation strategies that account for the unique ecological characteristics of each vegetation zone within vernal pool habitats.

2.
Genome Biol Evol ; 15(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37542471

RESUMO

White clover (Trifolium repens L.; Fabaceae) is an important forage and cover crop in agricultural pastures around the world and is increasingly used in evolutionary ecology and genetics to understand the genetic basis of adaptation. Historically, improvements in white clover breeding practices and assessments of genetic variation in nature have been hampered by a lack of high-quality genomic resources for this species, owing in part to its high heterozygosity and allotetraploid hybrid origin. Here, we use PacBio HiFi and chromosome conformation capture (Omni-C) technologies to generate a chromosome-level, haplotype-resolved genome assembly for white clover totaling 998 Mbp (scaffold N50 = 59.3 Mbp) and 1 Gbp (scaffold N50 = 58.6 Mbp) for haplotypes 1 and 2, respectively, with each haplotype arranged into 16 chromosomes (8 per subgenome). We additionally provide a functionally annotated haploid mapping assembly (968 Mbp, scaffold N50 = 59.9 Mbp), which drastically improves on the existing reference assembly in both contiguity and assembly accuracy. We annotated 78,174 protein-coding genes, resulting in protein BUSCO completeness scores of 99.6% and 99.3% against the embryophyta_odb10 and fabales_odb10 lineage datasets, respectively.


Assuntos
Trifolium , Trifolium/genética , Haplótipos , Melhoramento Vegetal , Medicago/genética , Cromossomos
3.
J Biol Chem ; 294(50): 19119-19136, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31694913

RESUMO

Mutations in the centrosomal protein 290 (CEP290) gene cause various ciliopathies involving retinal degeneration. CEP290 proteins localize to the ciliary transition zone and are thought to act as a gatekeeper that controls ciliary protein trafficking. However, precise roles of CEP290 in photoreceptors and pathomechanisms of retinal degeneration in CEP290-associated ciliopathies are not sufficiently understood. Using conditional Cep290 mutant mice, in which the C-terminal myosin-tail homology domain of CEP290 is disrupted after the connecting cilium is assembled, we show that this domain is essential for protein confinement between the inner and the outer segments. Upon disruption of the myosin-tail homology domain, inner segment plasma membrane proteins, including syntaxin 3 (STX3), synaptosome-associated protein 25 (SNAP25), and interphotoreceptor matrix proteoglycan 2 (IMPG2), rapidly accumulated in the outer segment. In contrast, localization of endomembrane proteins was not altered. Trafficking and confinement of most outer segment-resident proteins appeared to be unaffected or only minimally affected in Cep290 mutant mice. One notable exception was rhodopsin (RHO), which severely mislocalized to inner segments during the initial stage of degeneration. Similar mislocalization phenotypes were observed in Cep290rd16 mice. These results suggest that a failure of protein confinement at the connecting cilium and consequent accumulation of inner segment membrane proteins in the outer segment, along with insufficient RHO delivery, is part of the disease mechanisms that cause retinal degeneration in CEP290-associated ciliopathies. Our study provides insights into the pathomechanisms of retinal degenerations associated with compromised ciliary gates.


Assuntos
Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Miosinas/metabolismo , Células Fotorreceptoras/metabolismo , Proteoglicanas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteína 25 Associada a Sinaptossoma/metabolismo , Animais , Antígenos de Neoplasias/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto/genética , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Mutação
4.
Evolution ; 72(3): 453-472, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29359333

RESUMO

Animal taxa that differ in the intensity of sperm competition often differ in sperm production or swimming speed, arguably due to sexual selection on postcopulatory male traits affecting siring success. In plants, closely related self- and cross-pollinated taxa similarly differ in the opportunity for sexual selection among male gametophytes after pollination, so traits such as the proportion of pollen on the stigma that rapidly enters the style and mean pollen tube growth rate (PTGR) are predicted to diverge between them. To date, no studies have tested this prediction in multiple plant populations under uniform conditions. We tested for differences in pollen performance in greenhouse-raised populations of two Clarkia sister species: the predominantly outcrossing C. unguiculata and the facultatively self-pollinating C. exilis. Within populations of each taxon, groups of individuals were reciprocally pollinated (n = 1153 pollinations) and their styles examined four hours later. We tested for the effects of species, population, pollen type (self vs. outcross), the number of competing pollen grains, and temperature on pollen performance. Clarkia unguiculata exhibited higher mean PTGR than C. exilis; pollen type had no effect on performance in either taxon. The difference between these species in PTGR is consistent with predictions of sexual selection theory.


Assuntos
Clarkia/fisiologia , Pólen/fisiologia , Polinização , Seleção Genética , Reprodução Assexuada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...