Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38798342

RESUMO

The evolutionarily conserved AAA+ ATPases Rvb1 and Rvb2 proteins form a heteromeric complex (Rvb1/2) required for assembly or remodeling of macromolecular complexes in essential cellular processes ranging from chromatin remodeling to ribosome biogenesis. Rvb1 and Rvb2 have a high degree of sequence and structural similarity, and both contain the classical features of ATPases of their clade, including an N-terminal AAA+ subdomain with the Walker A motif, an insertion domain that typically interacts with various binding partners, and a C-terminal AAA+ subdomain containing a Walker B motif, the Sensor I and II motifs, and an arginine finger. In this study, we find that despite the high degree of structural similarity, Rvb1 and Rvb2 have distinct active sites that impact their activities and regulation within the Rvb1/2 complex. Using a combination of biochemical and genetic approaches, we show that replacing the homologous arginine fingers of Rvb1 and Rvb2 with different amino acids not only has distinct effects on the catalytic activity of the complex, but also impacts cell growth, and the Rvb1/2 interactions with binding partners. Using molecular dynamics simulations, we find that changes near the active site of Rvb1 and Rvb2 cause long-range effects on the protein dynamics in the insertion domain, suggesting a molecular basis for how enzymatic activity within the catalytic site of ATP hydrolysis can be relayed to other domains of the Rvb1/2 complex to modulate its function. Further, we show the impact that the arginine finger variants have on snoRNP biogenesis and validate the findings from molecular dynamics simulations using a targeted genetic screen. Together, our results reveal new aspects of the regulation of the Rvb1/2 complex by identifying a relay of long-range molecular communication from the ATPase active site of the complex to the binding site of cofactors. Most importantly, our findings suggest that despite high similarity and cooperation within the same protein complex, the two proteins have evolved with unique properties critical for the regulation and function of the Rvb1/2 complex.

2.
Eur J Med Chem ; 257: 115501, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37244161

RESUMO

Protease inhibitors are the most potent antivirals against HIV-1, but they still lose efficacy against resistant variants. Improving the resistance profile is key to developing more robust inhibitors, which may be promising candidates for simplified next-generation antiretroviral therapies. In this study, we explored analogs of darunavir with a P1 phosphonate modification in combination with increasing size of the P1' hydrophobic group and various P2' moieties to improve potency against resistant variants. The phosphonate moiety substantially improved potency against highly mutated and resistant HIV-1 protease variants, but only when combined with more hydrophobic moieties at the P1' and P2' positions. Phosphonate analogs with a larger hydrophobic P1' moiety maintained excellent antiviral potency against a panel of highly resistant HIV-1 variants, with significantly improved resistance profiles. The cocrystal structures indicate that the phosphonate moiety makes extensive hydrophobic interactions with the protease, especially with the flap residues. Many residues involved in these protease-inhibitor interactions are conserved, enabling the inhibitors to maintain potency against highly resistant variants. These results highlight the need to balance inhibitor physicochemical properties by simultaneous modification of chemical groups to further improve resistance profiles.


Assuntos
Inibidores da Protease de HIV , HIV-1 , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/química , Darunavir/farmacologia , Peptídeo Hidrolases , Protease de HIV/genética , Cristalografia por Raios X
3.
Elife ; 122023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36920025

RESUMO

Darunavir (DRV) is exceptional among potent HIV-1 protease inhibitors (PIs) in high drug concentrations that are achieved in vivo. Little is known about the de novo resistance pathway for DRV. We selected for resistance to high drug concentrations against 10 PIs and their structural precursor DRV. Mutations accumulated through two pathways (anchored by protease mutations I50V or I84V). Small changes in the inhibitor P1'-equivalent position led to preferential use of one pathway over the other. Changes in the inhibitor P2'-equivalent position determined differences in potency that were retained in the resistant viruses and that impacted the selected mutations. Viral variants from the two pathways showed differential selection of compensatory mutations in Gag cleavage sites. These results reveal the high level of selective pressure that is attainable with fifth-generation PIs and how features of the inhibitor affect both the resistance pathway and the residual potency in the face of resistance.


Assuntos
Infecções por HIV , Inibidores da Protease de HIV , HIV-1 , Humanos , Inibidores da Protease de HIV/química , HIV-1/genética , Darunavir/farmacologia , Darunavir/uso terapêutico , Mutação , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico
4.
Prehosp Disaster Med ; : 1-7, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35274606

RESUMO

IMPORTANCE: This paper provides a large-scale, per Major League Baseball (MLB) game analysis of foul ball (FB) injury data and provides estimates of injury frequency and severity. OBJECTIVE: This study's goal was to quantify and describe the rate and type of FB injuries at MLB games. DESIGN: This was a retrospective review of medical care reports for patients evaluated by on-site health care providers (HCPs) over a non-contiguous 11-year period (2005-2016). Data were obtained using Freedom of Information Act (FOIA) requests. SETTING: Data were received from three US-based MLB stadiums. RESULTS: The review reported 0.42-0.55 FB injuries per game that were serious enough to warrant presentation at a first aid center. This translated to a patients per 10,000 fans rate (PPTT) of 0.13-0.23. The transport to hospital rate (TTHR) was 0.02-0.39. Frequently, FB injuries required analgesics but were overwhelmingly minor and occurred less often than non-FB traumatic injuries (5.2% versus 42%-49%). However, FB injured fans were more likely to need higher levels of care and transport to hospital (TH) as compared to people suffering other traumatic injuries at the ballpark. Contusions or head injuries were common. Finally, FB injured fans were often hit in the abdomen, upper extremity, face, or head. It was found that FB injuries appeared to increase with time, and this increase in injuries aligns with the sudden increase in popularity of smartphones in the United States. CONCLUSIONS AND RELEVANCE: These data suggest that in roughly every two or three MLB games, a foul ball causes a serious enough injury that a fan seeks medical attention. This rate is high enough to warrant attention, but is comparable in frequency to other diagnostic categories. Assessing the risk to fans from FBs remains difficult, but with access to uniform data, researchers could answer persistent questions that would lead to actionable changes and help guide public policy towards safer stadiums.

5.
J Mol Biol ; 434(9): 167503, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183560

RESUMO

Third generation Hepatitis C virus (HCV) NS3/4A protease inhibitors (PIs), glecaprevir and voxilaprevir, are highly effective across genotypes and against many resistant variants. Unlike earlier PIs, these compounds have fluorine substitutions on the P2-P4 macrocycle and P1 moieties. Fluorination has long been used in medicinal chemistry as a strategy to improve physicochemical properties and potency. However, the molecular basis by which fluorination improves potency and resistance profile of HCV NS3/4A PIs is not well understood. To systematically analyze the contribution of fluorine substitutions to inhibitor potency and resistance profile, we used a multi-disciplinary approach involving inhibitor design and synthesis, enzyme inhibition assays, co-crystallography, and structural analysis. A panel of inhibitors in matched pairs were designed with and without P4 cap fluorination, tested against WT protease and the D168A resistant variant, and a total of 22 high-resolution co-crystal structures were determined. While fluorination did not significantly improve potency against the WT protease, PIs with fluorinated P4 caps retained much better potency against the D168A protease variant. Detailed analysis of the co-crystal structures revealed that PIs with fluorinated P4 caps can sample alternate binding conformations that enable adapting to structural changes induced by the D168A substitution. Our results elucidate molecular mechanisms of fluorine-specific inhibitor interactions that can be leveraged in avoiding drug resistance.


Assuntos
Ácidos Aminoisobutíricos , Ciclopropanos , Desenho de Fármacos , Farmacorresistência Viral , Inibidores da HCV NS3-4A Protease , Lactamas Macrocíclicas , Leucina/análogos & derivados , Prolina/análogos & derivados , Quinoxalinas , Sulfonamidas , Proteases Virais , Ácidos Aminoisobutíricos/química , Ácidos Aminoisobutíricos/farmacologia , Ciclopropanos/química , Ciclopropanos/farmacologia , Farmacorresistência Viral/genética , Flúor/química , Inibidores da HCV NS3-4A Protease/química , Inibidores da HCV NS3-4A Protease/farmacologia , Halogenação , Hepacivirus/efeitos dos fármacos , Hepacivirus/enzimologia , Hepacivirus/genética , Humanos , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacologia , Leucina/química , Leucina/genética , Leucina/farmacologia , Prolina/química , Prolina/genética , Prolina/farmacologia , Quinoxalinas/química , Quinoxalinas/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Proteases Virais/química , Proteases Virais/genética
6.
Biochemistry ; 60(39): 2925-2931, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34506130

RESUMO

Rupintrivir targets the 3C cysteine proteases of the picornaviridae family, which includes rhinoviruses and enteroviruses that cause a range of human diseases. Despite being a pan-3C protease inhibitor, rupintrivir activity is extremely weak against the homologous 3C-like protease of SARS-CoV-2. In this study, the crystal structures of rupintrivir were determined bound to enterovirus 68 (EV68) 3C protease and the 3C-like main protease (Mpro) from SARS-CoV-2. While the EV68 3C protease-rupintrivir structure was similar to previously determined complexes with other picornavirus 3C proteases, rupintrivir bound in a unique conformation to the active site of SARS-CoV-2 Mpro splitting the catalytic cysteine and histidine residues. This bifurcation of the catalytic dyad may provide a novel approach for inhibiting cysteine proteases.


Assuntos
Antivirais/metabolismo , Proteases 3C de Coronavírus/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Isoxazóis/metabolismo , Fenilalanina/análogos & derivados , Pirrolidinonas/metabolismo , SARS-CoV-2/enzimologia , Valina/análogos & derivados , Antivirais/química , Domínio Catalítico , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/química , Cristalografia por Raios X , Inibidores de Cisteína Proteinase/química , Enterovirus Humano D/enzimologia , Ligação de Hidrogênio , Isoxazóis/química , Fenilalanina/química , Fenilalanina/metabolismo , Ligação Proteica , Pirrolidinonas/química , Eletricidade Estática , Valina/química , Valina/metabolismo
7.
J Med Chem ; 64(16): 11972-11989, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34405680

RESUMO

The three pan-genotypic HCV NS3/4A protease inhibitors (PIs) currently in clinical use-grazoprevir, glecaprevir, and voxilaprevir-are quinoxaline-based P2-P4 macrocycles and thus exhibit similar resistance profiles. Using our quinoxaline-based P1-P3 macrocyclic lead compounds as an alternative chemical scaffold, we explored structure-activity relationships (SARs) at the P2 and P4 positions to develop pan-genotypic PIs that avoid drug resistance. A structure-guided strategy was used to design and synthesize two series of compounds with different P2 quinoxalines in combination with diverse P4 groups of varying sizes and shapes, with and without fluorine substitutions. Our SAR data and cocrystal structures revealed the interplay between the P2 and P4 groups, which influenced inhibitor binding and the overall resistance profile. Optimizing inhibitor interactions in the S4 pocket led to PIs with excellent antiviral activity against clinically relevant PI-resistant HCV variants and genotype 3, providing potential pan-genotypic inhibitors with improved resistance profiles.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Compostos Macrocíclicos/uso terapêutico , Inibidores de Proteases/uso terapêutico , Quinoxalinas/uso terapêutico , Animais , Antivirais/síntese química , Antivirais/metabolismo , Antivirais/farmacocinética , Cristalografia por Raios X , Farmacorresistência Viral/efeitos dos fármacos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/metabolismo , Compostos Macrocíclicos/farmacocinética , Masculino , Estrutura Molecular , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacocinética , Ligação Proteica , Quinoxalinas/síntese química , Quinoxalinas/metabolismo , Quinoxalinas/farmacocinética , Ratos Sprague-Dawley , Serina Proteases/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo
8.
ACS Chem Biol ; 16(3): 529-538, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33619959

RESUMO

Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that can cause severe paralytic neurologic disease and immune disorders as well as cancer. An estimated 20 million people worldwide are infected with HTLV-1, with prevalence reaching 30% in some parts of the world. In stark contrast to HIV-1, no direct acting antivirals (DAAs) exist against HTLV-1. The aspartyl protease of HTLV-1 is a dimer similar to that of HIV-1 and processes the viral polyprotein to permit viral maturation. We report that the FDA-approved HIV-1 protease inhibitor darunavir (DRV) inhibits the enzyme with 0.8 µM potency and provides a scaffold for drug design against HTLV-1. Analogs of DRV that we designed and synthesized achieved submicromolar inhibition against HTLV-1 protease and inhibited Gag processing in viral maturation assays and in a chronically HTLV-1 infected cell line. Cocrystal structures of these inhibitors with HTLV-1 protease highlight opportunities for future inhibitor design. Our results show promise toward developing highly potent HTLV-1 protease inhibitors as therapeutic agents against HTLV-1 infections.


Assuntos
Antivirais/química , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Darunavir/análogos & derivados , Vírus Linfotrópico T Tipo 1 Humano/efeitos dos fármacos , Inibidores de Proteases/química , Sequência de Aminoácidos , Antivirais/farmacologia , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Darunavir/farmacologia , Descoberta de Drogas , Escherichia coli/genética , Humanos , Simulação de Dinâmica Molecular , Estrutura Molecular , Terapia de Alvo Molecular , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
9.
Chem Rev ; 121(6): 3238-3270, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33410674

RESUMO

Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.


Assuntos
Antivirais/química , Inibidores Enzimáticos/química , Preparações Farmacêuticas/química , Proteínas Virais/química , Viroses/tratamento farmacológico , Antivirais/metabolismo , Antivirais/farmacologia , Biologia Computacional , Desenho de Fármacos , Farmacorresistência Viral , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , HIV-1/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Humanos , Aprendizado de Máquina , Mutação , Orthomyxoviridae/efeitos dos fármacos , Preparações Farmacêuticas/metabolismo , Ligação Proteica , Transdução de Sinais , Relação Estrutura-Atividade
10.
J Med Chem ; 63(15): 8296-8313, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32672965

RESUMO

The design, synthesis, and X-ray structural analysis of hybrid HIV-1 protease inhibitors (PIs) containing bis-tetrahydrofuran (bis-THF) in a pseudo-C2-symmetric dipeptide isostere are described. A series of PIs were synthesized by incorporating bis-THF of darunavir on either side of the Phe-Phe isostere of lopinavir in combination with hydrophobic amino acids on the opposite P2/P2' position. Structure-activity relationship studies indicated that the bis-THF moiety can be attached at either the P2 or P2' position without significantly affecting potency. However, the group on the opposite P2/P2' position had a dramatic effect on potency depending on the size and shape of the side chain. Cocrystal structures of inhibitors with wild-type HIV-1 protease revealed that the bis-THF moiety retained similar interactions as observed in the darunavir-protease complex regardless of the position on the Phe-Phe isostere. Analyses of cocrystal structures and molecular dynamics simulations provide insights into optimizing HIV-1 PIs containing bis-THF in non-sulfonamide dipeptide isosteres.


Assuntos
Furanos/química , Furanos/farmacologia , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/enzimologia , Cristalografia por Raios X , Darunavir/análogos & derivados , Darunavir/farmacologia , Dipeptídeos/química , Dipeptídeos/farmacologia , Desenho de Fármacos , Células HEK293 , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Protease de HIV/química , HIV-1/efeitos dos fármacos , Humanos , Modelos Moleculares , Relação Estrutura-Atividade
11.
mBio ; 11(2)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234812

RESUMO

Hepatitis C virus (HCV) infects millions of people worldwide, causing chronic liver disease that can lead to cirrhosis, hepatocellular carcinoma, and liver transplant. In the last several years, the advent of direct-acting antivirals, including NS3/4A protease inhibitors (PIs), has remarkably improved treatment outcomes of HCV-infected patients. However, selection of resistance-associated substitutions and polymorphisms among genotypes can lead to drug resistance and in some cases treatment failure. A proactive strategy to combat resistance is to constrain PIs within evolutionarily conserved regions in the protease active site. Designing PIs using the substrate envelope is a rational strategy to decrease the susceptibility to resistance by using the constraints of substrate recognition. We successfully designed two series of HCV NS3/4A PIs to leverage unexploited areas in the substrate envelope to improve potency, specifically against resistance-associated substitutions at D168. Our design strategy achieved better resistance profiles over both the FDA-approved NS3/4A PI grazoprevir and the parent compound against the clinically relevant D168A substitution. Crystallographic structural analysis and inhibition assays confirmed that optimally filling the substrate envelope is critical to improve inhibitor potency while avoiding resistance. Specifically, inhibitors that enhanced hydrophobic packing in the S4 pocket and avoided an energetically frustrated pocket performed the best. Thus, the HCV substrate envelope proved to be a powerful tool to design robust PIs, offering a strategy that can be translated to other targets for rational design of inhibitors with improved potency and resistance profiles.IMPORTANCE Despite significant progress, hepatitis C virus (HCV) continues to be a major health problem with millions of people infected worldwide and thousands dying annually due to resulting complications. Recent antiviral combinations can achieve >95% cure, but late diagnosis, low access to treatment, and treatment failure due to drug resistance continue to be roadblocks against eradication of the virus. We report the rational design of two series of HCV NS3/4A protease inhibitors with improved resistance profiles by exploiting evolutionarily constrained regions of the active site using the substrate envelope model. Optimally filling the S4 pocket is critical to avoid resistance and improve potency. Our results provide drug design strategies to avoid resistance that are applicable to other quickly evolving viral drug targets.


Assuntos
Antivirais/química , Desenho de Fármacos , Farmacorresistência Viral , Inibidores de Proteases/química , Proteínas não Estruturais Virais/química , Antivirais/farmacologia , Domínio Catalítico , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Mutação , Inibidores de Proteases/farmacologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/genética
12.
ACS Chem Biol ; 15(2): 342-352, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31868341

RESUMO

Hepatitis C virus, causative agent of chronic viral hepatitis, infects 71 million people worldwide and is divided into seven genotypes and multiple subtypes with sequence identities between 68 to 82%. While older generation direct-acting antivirals had varying effectiveness against different genotypes, the newest NS3/4A protease inhibitors including glecaprevir (GLE) have pan-genotypic activity. The structural basis for pan-genotypic inhibition and effects of polymorphisms on inhibitor potency were not well-known due to lack of crystal structures of GLE-bound NS3/4A or genotypes other than 1. In this study, we determined the crystal structures of NS3/4A from genotypes 1a, 3a, 4a, and 5a in complex with GLE. Comparison with the highly similar grazoprevir indicated the mechanism of GLE's drastic improvement in potency. We found that, while GLE is highly potent against wild-type NS3/4A of all genotypes, specific resistance-associated substitutions (RASs) confer orders of magnitude loss in inhibition. Our crystal structures reveal molecular mechanisms behind pan-genotypic activity of GLE, including potency loss due to RASs at D168. Our structures permit for the first time analysis of changes due to polymorphisms among genotypes, providing insights into design principles that can aid future drug development and potentially can be extended to other proteins.


Assuntos
Ácidos Aminoisobutíricos/metabolismo , Antivirais/metabolismo , Ciclopropanos/metabolismo , Hepacivirus/enzimologia , Lactamas Macrocíclicas/metabolismo , Leucina/análogos & derivados , Prolina/análogos & derivados , Quinoxalinas/metabolismo , Serina Proteases/metabolismo , Inibidores de Serina Proteinase/metabolismo , Sulfonamidas/metabolismo , Proteínas não Estruturais Virais/metabolismo , Amidas/química , Amidas/metabolismo , Ácidos Aminoisobutíricos/química , Antivirais/química , Carbamatos/química , Carbamatos/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ciclopropanos/química , Lactamas Macrocíclicas/química , Leucina/química , Leucina/metabolismo , Mutação , Prolina/química , Prolina/metabolismo , Ligação Proteica , Quinoxalinas/química , Serina Proteases/química , Serina Proteases/genética , Inibidores de Serina Proteinase/química , Sulfonamidas/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
13.
Biochemistry ; 58(35): 3711-3726, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31386353

RESUMO

Protease inhibitors have the highest potency among antiviral therapies against HIV-1 infections, yet the virus can evolve resistance. Darunavir (DRV), currently the most potent Food and Drug Administration-approved protease inhibitor, retains potency against single-site mutations. However, complex combinations of mutations can confer resistance to DRV. While the interdependence between mutations within HIV-1 protease is key for inhibitor potency, the molecular mechanisms that underlie this control remain largely unknown. In this study, we investigated the interdependence between the L89V and L90M mutations and their effects on DRV binding. These two mutations have been reported to be positively correlated with one another in HIV-1 patient-derived protease isolates, with the presence of one mutation making the probability of the occurrence of the second mutation more likely. The focus of our investigation is a patient-derived isolate, with 24 mutations that we call "KY"; this variant includes the L89V and L90M mutations. Three additional KY variants with back-mutations, KY(V89L), KY(M90L), and the KY(V89L/M90L) double mutation, were used to experimentally assess the individual and combined effects of these mutations on DRV inhibition and substrate processing. The enzymatic assays revealed that the KY(V89L) variant, with methionine at residue 90, is highly resistant, but its catalytic function is compromised. When a leucine to valine mutation at residue 89 is present simultaneously with the L90M mutation, a rescue of catalytic efficiency is observed. Molecular dynamics simulations of these DRV-bound protease variants reveal how the L90M mutation induces structural changes throughout the enzyme that undermine the binding interactions.


Assuntos
Substituição de Aminoácidos/fisiologia , Farmacorresistência Viral/genética , Epistasia Genética/genética , Protease de HIV/genética , Substituição de Aminoácidos/genética , Domínio Catalítico , Cristalografia por Raios X , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Protease de HIV/química , Protease de HIV/metabolismo , Inibidores da Protease de HIV/farmacologia , Inibidores da Protease de HIV/uso terapêutico , HIV-1/enzimologia , HIV-1/genética , Humanos , Leucina/genética , Metionina/genética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto/fisiologia , Ligação Proteica , Desnaturação Proteica , Valina/genética
14.
J Med Chem ; 62(17): 8062-8079, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386368

RESUMO

A structure-guided design strategy was used to improve the resistance profile of HIV-1 protease inhibitors by optimizing hydrogen bonding and van der Waals interactions with the protease while staying within the substrate envelope. Stereoisomers of 4-(1-hydroxyethyl)benzene and 4-(1,2-dihydroxyethyl)benzene moieties were explored as P2' ligands providing pairs of diastereoisomers epimeric at P2', which exhibited distinct potency profiles depending on the configuration of the hydroxyl group and size of the P1' group. While compounds with the 4-(1-hydroxyethyl)benzene P2' moiety maintained excellent antiviral potency against a panel of multidrug-resistant HIV-1 strains, analogues with the polar 4-(1,2-dihydroxyethyl)benzene moiety were less potent, and only the (R)-epimer incorporating a larger 2-ethylbutyl P1' group showed improved potency. Crystal structures of protease-inhibitor complexes revealed strong hydrogen bonding interactions of both (R)- and (S)-stereoisomers of the hydroxyethyl group with Asp30'. Notably, the (R)-dihydroxyethyl group was involved in a unique pattern of direct hydrogen bonding interactions with the backbone amides of Asp29' and Asp30'. The SAR data and analysis of crystal structures provide insights for optimizing these promising HIV-1 protease inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Inibidores da Protease de HIV/farmacologia , Protease de HIV/metabolismo , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Linhagem Celular , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Células HEK293 , Protease de HIV/química , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/química , HIV-1/enzimologia , Humanos , Ligação de Hidrogênio , Ligantes , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato
15.
ACS Chem Biol ; 14(11): 2441-2452, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31361460

RESUMO

Drug resistance continues to be a growing global problem. The efficacy of small molecule inhibitors is threatened by pools of genetic diversity in all systems, including antibacterials, antifungals, cancer therapeutics, and antivirals. Resistant variants often include combinations of active site mutations and distal "secondary" mutations, which are thought to compensate for losses in enzymatic activity. HIV-1 protease is the ideal model system to investigate these combinations and underlying molecular mechanisms of resistance. Darunavir (DRV) binds wild-type (WT) HIV-1 protease with a potency of <5 pM, but we have identified a protease variant that loses potency to DRV 150 000-fold, with 11 mutations in and outside the active site. To elucidate the roles of these mutations in DRV resistance, we used a multidisciplinary approach, combining enzymatic assays, crystallography, and molecular dynamics simulations. Analysis of protease variants with 1, 2, 4, 8, 9, 10, and 11 mutations showed that the primary active site mutations caused ∼50-fold loss in potency (2 mutations), while distal mutations outside the active site further decreased DRV potency from 13 nM (8 mutations) to 0.76 µM (11 mutations). Crystal structures and simulations revealed that distal mutations induce subtle changes that are dynamically propagated through the protease. Our results reveal that changes remote from the active site directly and dramatically impact the potency of the inhibitor. Moreover, we find interdependent effects of mutations in conferring high levels of resistance. These mechanisms of resistance are likely applicable to many other quickly evolving drug targets, and the insights may have implications for the design of more robust inhibitors.


Assuntos
Darunavir/metabolismo , Farmacorresistência Viral/genética , Inibidores da Protease de HIV/metabolismo , Protease de HIV/genética , Protease de HIV/metabolismo , Biocatálise , Domínio Catalítico/genética , Humanos , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica
17.
ACS Infect Dis ; 5(2): 316-325, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30543749

RESUMO

HIV-1 protease is one of the prime targets of agents used in antiretroviral therapy against HIV. However, under selective pressure of protease inhibitors, primary mutations at the active site weaken inhibitor binding to confer resistance. Darunavir (DRV) is the most potent HIV-1 protease inhibitor in clinic; resistance is limited, as DRV fits well within the substrate envelope. Nevertheless, resistance is observed due to hydrophobic changes at residues including I50, V82, and I84 that line the S1/S1' pocket within the active site. Through enzyme inhibition assays and a series of 12 crystal structures, we interrogated susceptibility of DRV and two potent analogues to primary S1' mutations. The analogues had modifications at the hydrophobic P1' moiety compared to DRV to better occupy the unexploited space in the S1' pocket where the primary mutations were located. Considerable losses of potency were observed against protease variants with I84V and I50V mutations for all three inhibitors. The crystal structures revealed an unexpected conformational change in the flap region of I50V protease bound to the analogue with the largest P1' moiety, indicating interdependency between the S1' subsite and the flap region. Collective analysis of protease-inhibitor interactions in the crystal structures using principle component analysis was able to distinguish inhibitor identity and relative potency solely based on van der Waals contacts. Our results reveal the complexity of the interplay between inhibitor P1' moiety and S1' mutations and validate principle component analyses as a useful tool for distinguishing resistance and inhibitor potency.


Assuntos
Darunavir/análogos & derivados , Inibidores da Protease de HIV/química , Inibidores da Protease de HIV/farmacologia , Protease de HIV/genética , HIV-1/efeitos dos fármacos , HIV-1/genética , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Darunavir/química , HIV-1/enzimologia , Humanos , Cinética , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...