Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(6): 3716-3724, 2024 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-38897791

RESUMO

Straw return, as an important measure for soil fertility improvement in farmland, significantly affects the emissions of greenhouse gases N2O and CO2. Thus, the collected soil samples from five long-term (30-year) fertilization treatments (no fertilization, CK; recommended chemical fertilizer, F; 200 % of recommended chemical fertilizer, 2F; pig manure, M; and chemical fertilizer combined with pig manure, FM) were amended with and without straw and incubated under constant temperature and humidity conditions (25 ℃ and 65 % maximum field water holding capacity) for 20 days so as to investigate the key factors influencing N2O and CO2 emissions in response to straw addition in long-term fertilization treatments. The results showed that fertilization significantly increased N2O emissions. Compared to those under the unfertilized treatment[(22.05 ±2.09) µg·kg-1, calculated as nitrogen, the same as below], cumulative N2O emissions from the chemical fertilizer treatments significantly increased by 119 %-195 %[(48.38 ±20.81) µg·kg-1 and (65.13 ±12.55) µg·kg-1 from the F and 2F treatments, respectively], and those from the manure treatments increased by 275 %-399 %[(82.72 ±12.73) µg·kg-1 and (1 101.99 ±425.71) µg·kg-1 from the M and FM treatments, respectively]. Soil NO3--N, DOC, and DTN were the main factors influencing N2O emissions from fertilized treatments in the absence of straw addition. Straw addition significantly increased cumulative N2O emissions by 345 % and 247 % in the 2F and M treatments, respectively, compared to those in the corresponding fertilized treatments without straw addition, with no significant effect on N2O emissions in the CK, F, and FM treatments. Straw addition increased DOC content and microbial activity and decreased soil NO3--N and DTN contents, thereby increasing N2O emissions. Fertilization also significantly increased CO2 emissions. Compared to those from the unfertilized treatment, cumulative CO2 emissions from the manure treatments significantly increased by 120 %-130 %[(122.11 ±4.3) mg·kg-1 (calculated as carbon, the same as below) and (116.47 ±4.55) mg·kg-1 from the M and FM treatments, respectively], and those in the 2F treatment increased by 28 %[(65.13 ±12.55) mg·kg-1]. In the absence of straw addition, soil MBC, DOC, and DTN were the main factors influencing CO2 emissions. Compared to those in the treatments without straw addition, straw addition significantly increased cumulative CO2 emissions by 660 %-1132 % among fertilization treatments, due to increased DOC and MBC contents and enhanced microbial activity. In conclusion, straw addition significantly increased N2O and CO2 emissions through increased soil DTN consumption and DOC content among fertilization treatments. In soils treated with manure amendment, straw return should be rationally considered for the purpose of balancing the comprehensive trade-offs between fertility improvement and greenhouse gas emissions.

2.
J Integr Med ; 22(1): 72-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38307819

RESUMO

OBJECTIVE: Melittin and its derivative have been developed to support effective gene delivery systems. Their ability to facilitate endosomal release enhances the delivery of nanoparticle-based gene therapy. Nevertheless, its potential application in the context of viral vectors has not received much attention. Therefore, we would like to optimize the rAAV vector by Melittin analog to improve the transduction efficiency of rAAV in liver cancer cells and explore the mechanism of Melittin analog on rAAV. METHODS: Various melittin-derived peptides were inserted into loop VIII of the capsid protein in recombinant adeno-associated virus vectors. These vectors carrying either gfp or fluc genes were subjected to quantitative polymerase chain reaction assays and transduction assays in human embryonic kidney 293 (HEK293T) cells to investigate the efficiency of vector production and gene delivery. In addition, the ability of a specific p5RHH-rAAV vector to deliver genes was examined through in vitro transduction of different cultured cells and in vivo tail vein administration to C57BL/6 mice. Finally, the intricate details of the vector-mediated transduction mechanisms were explored by using pharmacological inhibitors of every stage of the rAAV2 intracellular life cycle. RESULTS: A total of 76 melittin-related peptides were identified from existing literature. Among them, CMA-3, p5RHH and aAR3 were found to significantly inhibit transduction of rAAV2 vector crude lysate. The p5RHH-rAAV2 vectors efficiently transduced not only rAAV-potent cell lines but also cell lines previously considered resistant to rAAV. Mechanistically, bafilomycin A1, a vacuolar endosome acidification inhibitor, completely inhibited the transgene expression mediated by the p5RHH-rAAV2 vectors. Most importantly, p5RHH-rAAV8 vectors also increased hepatic transduction in vivo in C57BL/6 mice. CONCLUSION: The incorporation of melittin analogs into the rAAV capsids results in a significant improvement in rAAV-mediated transgene expression. While further modifications remain an area of interest, our studies have substantially broadened the pharmacological prospects of melittin in the context of viral vector-mediated gene delivery. Please cite this article as: Meng J, He Y, Yang H, Zhou L, Wang S, Feng X, Al-shargi OY, Yu X, Zhu L, Ling, C. Melittin analog p5RHH enhances recombinant adeno-associated virus transduction efficiency. J Integr Med. 2024; 22(1): 72-82.


Assuntos
Dependovirus , Meliteno , Camundongos , Masculino , Animais , Humanos , Dependovirus/genética , Meliteno/farmacologia , Meliteno/genética , Transdução Genética , Células HEK293 , Camundongos Endogâmicos C57BL , Vetores Genéticos
3.
Org Lett ; 25(30): 5585-5590, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37471120

RESUMO

A chiral 4-aryl-pyridine-N-oxide nucleophilic organocatalyst was used to synthesize chiral phthalidyl ester prodrugs by the acylative dynamic kinetic resolution process. By using the 3,5-dimethylphenyl-derived ArPNO catalyst, the phthalidyl esters were obtained in up to 97% yield with 97% ee at room temperature. Two phthalidyl esters of prodrugs, talosalate and talmetacin, were generated. By control experiments and density functional theory calculations, an acyl transfer mechanism was proposed.

4.
Zhongguo Zhong Yao Za Zhi ; 47(1): 215-223, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178928

RESUMO

An ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS) method was established to investigate the pharmacokinetic behaviors of psoralenoside, isopsoralenoside, calycosin-7-glucoside, ononin, psoralen, isopsoralen, methylnissolin, and neobavaisoflavone in rat plasma after oral administration of Bufei Huoxue Capsules. After SD rats were administered with Bufei Huoxue Capsules suspension by gavage, blood samples were collected from the inner canthus at different time points. After protein precipitation, plasma samples were separated on ACQUITY UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 µm). The mobile phase consisted of acetonitrile(A) and water(B) containing 0.1% formic acid in gradient elution. The positive and negative ions were measured simultaneously in the multi-reaction monitoring(MRM) mode. The pharmacokinetic parameters were calculated and fitted by DAS 3.2.8. Psoralenoside, isopsoralenoside, calycosin-7-glucoside, ononin, psoralen, isopsoralen, methylnissolin, and neobavaisoflavone were detected in the rat plasma after drug administration, with AUC_(0-t) of(3 357±1 348),(3 555±1 696),(3.03±0.88),(2.21±0.33),(1 787±522),(2 295±539),(5.69±1.41) and(3.40±0.75) µg·L~(-1)·h, and T_(max) of(1.56±0.62),(1.40±0.70),(0.21±0.05),(0.25±0.12),(0.26±0.11),(0.34±0.29),(0.74±0.59), and 0.25 h. The method is proved specific and repeatable and is suitable for the determination of psoralenoside, isopsoralenoside, calycosin-7-glucoside, ononin, pso-ralen, isopsoralen, methylnissolin, and neobavaisoflavone in the rat plasma, which can be applied to pharmacokinetic study.


Assuntos
Medicamentos de Ervas Chinesas , Espectrometria de Massas em Tandem , Animais , Cápsulas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
5.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-927928

RESUMO

An ultra-high performance liquid chromatography-tandem mass spectrometry(UHPLC-MS/MS) method was established to investigate the pharmacokinetic behaviors of psoralenoside, isopsoralenoside, calycosin-7-glucoside, ononin, psoralen, isopsoralen, methylnissolin, and neobavaisoflavone in rat plasma after oral administration of Bufei Huoxue Capsules. After SD rats were administered with Bufei Huoxue Capsules suspension by gavage, blood samples were collected from the inner canthus at different time points. After protein precipitation, plasma samples were separated on ACQUITY UPLC BEH C_(18) column(2.1 mm×100 mm, 1.7 μm). The mobile phase consisted of acetonitrile(A) and water(B) containing 0.1% formic acid in gradient elution. The positive and negative ions were measured simultaneously in the multi-reaction monitoring(MRM) mode. The pharmacokinetic parameters were calculated and fitted by DAS 3.2.8. Psoralenoside, isopsoralenoside, calycosin-7-glucoside, ononin, psoralen, isopsoralen, methylnissolin, and neobavaisoflavone were detected in the rat plasma after drug administration, with AUC_(0-t) of(3 357±1 348),(3 555±1 696),(3.03±0.88),(2.21±0.33),(1 787±522),(2 295±539),(5.69±1.41) and(3.40±0.75) μg·L~(-1)·h, and T_(max) of(1.56±0.62),(1.40±0.70),(0.21±0.05),(0.25±0.12),(0.26±0.11),(0.34±0.29),(0.74±0.59), and 0.25 h. The method is proved specific and repeatable and is suitable for the determination of psoralenoside, isopsoralenoside, calycosin-7-glucoside, ononin, pso-ralen, isopsoralen, methylnissolin, and neobavaisoflavone in the rat plasma, which can be applied to pharmacokinetic study.


Assuntos
Animais , Ratos , Cápsulas , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacocinética , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
6.
Plant Physiol Biochem ; 163: 250-260, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33866146

RESUMO

Lilium is an important commercial flowering species, and there are many varieties and more than 100 species of wild Lilium. Lilium × formolongi is usually propagated from seedlings, and the flowering of these plants is driven mainly by the photoperiodic pathway. Most of the other lily plants are propagated via bulblets and need to be vernalized; these plants can be simply divided into pretransplantation types and posttransplantation types according to the time at which the floral transition occurs. We identified three Lilium FLOWERING LOCUS T (LFT) family members in 7 Lilium varieties, and for each gene, the coding sequence of the different varieties was identical. Among these genes, the LFT1 gene of Lilium was most homologous to the AtFT gene, which promotes flowering in Arabidopsis. We analyzed the expression patterns of LFT genes in Lilium × formolongi seedlings and in different Lilium varieties, and the results showed that LFT1 and LFT3 may promote floral induction. Compared with LFT3, LFT1 may have a greater effect on floral induction in Lilium, which is photoperiod sensitive, while LFT3 may play a more important role in the floral transition of lily plants, which have a high requirement for vernalization. LFT2 may be involved in the differentiation of bulblets, which was verified by tissue culture experiments, and LFT1 may have other functions involved in promoting bulblet growth. The functions of LFT genes were verified by the use of transgenic Arabidopsis thaliana plants, which showed that both the LFT1 and LFT3 genes can promote early flowering in Arabidopsis. Compared with LFT3, LFT1 promoted flowering more obviously, and thus, this gene could be an important promoter of floral induction in Lilium.


Assuntos
Proteínas de Arabidopsis , Lilium , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Lilium/genética , Lilium/metabolismo , Fotoperíodo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo
7.
Acta Pharmaceutica Sinica ; (12): 1789-1796, 2021.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-887018

RESUMO

An immunologically stressed rat model was used in a metabolomics study on the ability of Paeoniae Rubra Radix to reduce the liver toxicity of Psoraleae Fructus. Different groups of rats were given the extracts of Psoraleae Fructus and Psoraleae Fructus together with Paeoniae Rubra Radix or combined with a non-toxic dose of lipopolysaccharide (LPS). The biochemical indices of liver function and pathological changes in liver tissue were used to evaluate histopathological changes. UHPLC-QTOF/MS was used to analyze the metabolic profile of serum samples, combined with principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) methods. The HMDB database and Metabo Analyst online tool were used for biomarker identification and metabolic pathway-enrichment analysis. The results show that the co-treatment Psoraleae Fructus and LPS resulted in significant liver injury, indicated by the elevation of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, as well as obvious pathological changes. Liver injury was significantly decreased by treatment with Paeoniae Rubra Radix. Metabolomic analysis showed that the addition of Paeoniae Rubra Radix ameliorated the abnormal serum metabolism in rats mainly through regulation of arachidonic acid metabolism and glycerophospholipid metabolism pathways.

8.
Mol Plant Pathol ; 21(6): 749-760, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32319186

RESUMO

Grey mould is one of the most determinative factors of lily growth and plays a major role in limiting lily productivity. MicroRNA159 (miR159) is a highly conserved microRNA in plants, and participates in the regulation of plant development and stress responses. Our previous studies revealed that lre-miR159a participates in the response of Lilium regale to Botrytis elliptica according to deep sequencing analyses; however, the response mechanism remains unknown. Here, lre-miR159a and its target LrGAMYB gene were isolated from L. regale. Transgenic Arabidopsis overexpressing lre-MIR159a exhibited larger leaves and smaller necrotic spots on inoculation with Botrytis than those of wild-type and overexpressing LrGAMYB plants. The lre-MIR159a overexpression also led to repressed expression of two targets of miR159, AtMYB33 and AtMYB65, and enhanced accumulation of hormone-related genes, including AtPR1, AtPR2, AtNPR1, AtPDF1.2, and AtLOX for both the jasmonic acid and salicylic acid pathways. Moreover, lower levels of H2 O2 and O2- were observed in lre-MIR159a transgenic Arabidopsis, which reduced the damage from reactive oxygen species accumulation. Taken together, these results indicate that lre-miR159a positively regulates resistance to grey mould by repressing the expression of its target LrGAMYB gene and activating a defence response.


Assuntos
Botrytis/fisiologia , Resistência à Doença/genética , Lilium/genética , MicroRNAs/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/imunologia , Flores/microbiologia , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Lilium/imunologia , Lilium/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
9.
Dev Neurosci ; 41(3-4): 203-211, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536986

RESUMO

The Papez circuit is crucial for several brain functions, including long-term memory and emotion. Estradiol modulates cognitive functions based on the expression pattern of its receptor subtypes including estrogen receptor (ER) α, ß, and G protein-coupled receptor 30 (GPR30). Similarly, the activity in the cholinergic system correlates with several brain functions, such as learning and memory. In this study, we used immunofluorescence to examine the expression patterns of ERß and Western blotting to analyze GPR30 and choline acetyltransferase (ChAT) expression, in different regions of the Papez circuit, including the prefrontal cortex, hippocampus, hypothalamus, anterior nucleus of the thalamus, and cingulum in female rats at postnatal days (PND) 1, 10, and 56. Our main finding was that the highest expression of ERß and GPR30 was noted in each brain area of the Papez circuit in the PND1 rats, whereas the expression of ChAT was the highest in PND10 rats. These results provide vital information on the postnatal expression patterns of ER subtypes and ChAT in different regions of the Papez circuit.


Assuntos
Colina O-Acetiltransferase/metabolismo , Hipocampo/metabolismo , Rede Nervosa/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Estradiol/metabolismo , Estrogênios/metabolismo , Memória/fisiologia , Córtex Pré-Frontal/metabolismo , Ratos
10.
Basic Clin Pharmacol Toxicol ; 125(5): 439-449, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31220411

RESUMO

Metformin, a first-line drug for type-2 diabetes, plays a potentially protective role in preventing Alzheimer's disease (AD), but its underlying mechanism is unclear. In this study, Aß25-35 -treated SH-SY5Y cells were used as a cell model of AD to investigate the neuroprotective effect of metformin, as well as its underlying mechanisms. We found that metformin decreased the cell apoptosis rate and death, ratio of Bcl-2/Bax, and expression of NR2A and NR2B, and increased the expression of LC3 in Aß25-35 -treated SH-SY5Y cells. Metformin also reduced intracellular and extracellular Glu concentrations, as well as the intracellular concentration of Ca2+ and ROS in Aß25-35 -treated SH-SY5Y cells. These findings suggest that metformin inhibits Aß25-35 -treated SH-SY5Y cell death by inhibiting apoptosis, decreasing intracellular Ca2+ and ROS by reducing neurotoxicity of excitatory amino acids, and by possibly reversing autophagy disorder via regulating autophagy process.


Assuntos
Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Metformina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Aminoácidos Excitatórios/metabolismo , Humanos , Metformina/uso terapêutico , Neurônios , Fármacos Neuroprotetores/uso terapêutico , Fragmentos de Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Cell Mol Neurobiol ; 39(6): 809-822, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31037516

RESUMO

We established a model of Alzheimer's disease in vitro by exposing primary hippocampal neurons of neonatal Wistar rats to the ß-Amyloid peptide fragment 25-35, Aß25-35. We then observed the effects of genistein, a type of soybean isoflavone, on Aß25-35-incubated hippocampal neuron viability, and the electrophysiological properties of voltage-gated sodium channels (NaV) and potassium channels (KV) in the hippocampal neurons. Aß25-35 exposure reduced the viability of hippocampal neurons, decreased the peak amplitude of voltage-activated sodium channel currents (INa), and significantly reduced INa at different membrane potentials. Moreover, Aß25-35 shifted the activation curve toward depolarization, shifted the inactivation curve toward hyperpolarization, and increased the time constant of recovery from inactivation. Aß25-35 exposure significantly shifted the inactivation curve of transient outward K+ currents (IA) toward hyperpolarization and increased its time constant of recovery from inactivation. In addition, Aß25-35 significantly decreased the peak density of outward-delayed rectifier potassium channel currents (IDR) and significantly reduced IDR value at different membrane potentials. We found that genistein partially reversed the decrease in hippocampal neuron viability, and the alterations in electrophysiological properties of NaV and KV induced by Aß25-35. Our results suggest that genistein could inhibit Aß25-35-induced neuronal damage with changes in the electrophysiological properties of NaV and KV.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Genisteína/farmacologia , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/toxicidade , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hipocampo/patologia , Ativação do Canal Iônico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Ratos Wistar
12.
Phytother Res ; 33(2): 431-441, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30450837

RESUMO

In this study, we investigated the protective effects of genistein against SH-SY5Y cell damage induced by ß-amyloid 25-35 peptide (Aß25-35 ) and the underlying mechanisms. Aß-induced neuronal death, apoptosis, glutamate receptor subunit expression, Ca2+ ion concentration, amino acid transmitter concentration, and apoptosis-related factor expression were evaluated to determine the effects of genistein on Aß-induced neuronal death and apoptosis. The results showed that genistein increased the survival of SH-SY5Y cells and decreased the level of apoptosis induced by Aß25-35 . In addition, genistein reversed the Aß25-35 -induced changes in amino acid transmitters, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors, and N-methyl-d-aspartate (NMDA) receptor subunits in SH-SY5Y cells. Aß25-35 -induced changes in Ca2+ and B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X (Bax) protein and gene levels in cells were also reversed by genistein. Our data suggest that genistein protects against Aß25-35 -induced damage in SH-SY5Y cells, possibly by regulating the expression of apoptosis-related proteins and Ca2+ influx through ionotropic glutamate receptors.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Genisteína/farmacologia , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Receptores Ionotrópicos de Glutamato/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Neurônios/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Zhen Ci Yan Jiu ; 43(8): 526-30, 2018 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-30232858

RESUMO

OBJECTIVE: To observe the therapeutic effect of "Huayu Tongluo"(blood stasis-removing and meridian-collateral-dredging) moxibustion for vascular cognitive impairment(VCI) patients and changes of insulin like growth factor -1(IGF-1) levels in serum after the treatment. METHODS: Sixty patients with VCI were randomly divided into medication (control) and moxibustion groups (n=30 in each group). Cotton cloth-separated moxibustion was applied to Baihui (GV 20) and Shenting (GV 24), and conventional moxibustion applied to Dazhui (GV 14) and Yongquan (KI 1) for 30 min, once daily, 6 times a week and for 30 days. Patients of the control group were treated by oral administration of Donepezil hydrochloride at the dose of 5 mg/night for 30 days. The core symptoms of traditional Chinese medicine (TCM), mini-mental state examination(MMSE), activity of daily living(ADL) and Montreal cognitive assessment(MoCA) scales were used to assess the therapeutic effect after the treatment. The content of serum IGF-1 was determined by ELISA. RESULTS: Of the two 30 cases in the control and moxibustion groups, 9 and 17 experienced marked improvement, 13 and were effective, 8 and 3 ineffective, with the effective rates being 73.33% and 90.00%, respectively. The effective rate in the moxibustion group was obviously higher than that in the control group (P<0.05). After the treatment, the TCM symptom scores were significantly decreased, and the MMSE, ADL and MoCA scores considerably increased in both groups compared with those of their own individual pre-treatment (P<0.01). The TCM symptom score of the moxibustion group was significantly lower, and the MMSE and ADL scores were obviously higher than those of the control group (P<0.01). The serum IGF-1 content in both groups was significantly increased after the treatment relevant to that of their own individual pre-treatment (P<0.01), and was obviously higher in the moxibustion group than in the control group (P<0.01). No significant difference was found between the two groups in the MoCA score after the treatment (P>0.05).. CONCLUSION: "Huayu Tongluo" moxibustion has a positive effect for patients with VCI, which may be associated with its effect in up-regulating serum IGF-1 level.


Assuntos
Disfunção Cognitiva , Moxibustão , Pontos de Acupuntura , Disfunção Cognitiva/terapia , Medicamentos de Ervas Chinesas , Humanos
14.
Plant Physiol Biochem ; 127: 525-536, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29723824

RESUMO

A major constraint in producing lilies is gray mold caused by Botrytis elliptica and B. cinerea. WRKY transcription factors play important roles in plant immune responses. However, limited information is available about the WRKY gene family in lily plants. In this study, 23 LrWRKY genes with complete WRKY domains were identified from the Botrytis-resistant species Lilium regale. The putative WRKY genes were divided into seven subgroups (Group I, IIa-e, and III) according to their structural features. Sequence alignment revealed that LrWRKY proteins have a highly conserved WRKYGQK domain and a variant, the WRKYGKK domain, and these proteins generally contained similar motif compositions throughout the same subgroup. Functional annotation predicted they might be involved in biological processes related to abiotic and biotic stresses. A qRT-PCR analysis confirmed that expression of six LrWRKY genes in L. regale or the susceptible Asian hybrid 'Yale' was induced by B. cinerea infection. Among these genes, LrWRKY4, LrWRKY8 and LrWRKY10 were expressed at a higher level in L. regale than 'Yale', while the expression of LrWRKY6 and LrWRKY12 was lower in L. regale. Furthermore, LrWRKY4 and LrWRKY12 genes, which also respond to salicylic acid (SA) and methyl jasmonate (MeJA) treatments, were isolated from L. regale. Subcellular localization analysis determined that they were targeted to the nucleus. Constitutive expression of LrWRKY4 and LrWRKY12 in Arabidopsis resulted in plants that were more resistant to B. cinerea than wild-type plants. This resistance was coupled with the transcriptional changes of SA and JA-responsive genes. Overall, our study provides valuable information about the structural and functional characterization of LrWRKY genes that will not only deepen our understanding of the molecular mechanisms underlying the defense of lily against B. cinerea but also offer potential targets for cultivar improvement via biotechnology.


Assuntos
Botrytis , Resistência à Doença/fisiologia , Regulação da Expressão Gênica/fisiologia , Lilium/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/biossíntese , Fatores de Transcrição/biossíntese , Lilium/genética , Lilium/microbiologia , Doenças das Plantas/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética
15.
Onco Targets Ther ; 11: 2017-2028, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29670377

RESUMO

BACKGROUND: Autophagy induction is a common mechanism for antitumor chemicals in induction of cancer cell death. However, the role of autophagy in crocin-induced apoptosis is barely studied in hepatocellular carcinoma (HCC). MATERIALS AND METHODS: The influence of crocin on growth, apoptosis, and autophagy and its mutual relations were analyzed by Cell Counting Kit-8 assay, flow cytometer, EGFP-LC3 puncta analysis, and Western blot in HCC cells. The activities of Akt/mTOR axis and its roles in autophagy regulation were also detected by Western blot in HCC cells treated with crocin. Finally, the roles of Akt/mTOR axis in crocin-induced autophagic apoptosis were analyzed by Western blot and flow cytometer in HCC cells. RESULTS: The results showed that crocin can induce growth inhibition in a does- and time-dependent pattern by apoptosis. Increased LC3 puncta and upregulated LC3-II accumulation was observed as early as at 6 hours in HepG2 and HCCLM3 cells treated with 3 mg/mL crocin. Moreover, apoptosis analysis using flow cytometer and cleaved poly (ADP-ribose) polymerase detection revealed that autophagy initiation was prior to apoptosis activation in HCC cells treated with crocin. When autophagy was blocked with 3-methyladenine, crocin-induced apoptosis was inhibited in HCC cells. Furthermore, crocin treatment constrained the activities of key proteins in Akt/mTOR signaling, such as p-Akt (S473), p-mTOR (S2448), and p-p70S6K (T389), suggesting that crocin could induce autophagic apoptosis in HCC cells in an Akt/mTOR-dependent mechanism. Indeed, when autophagy was suppressed by forced expression of Akt, the crocin-induced apoptosis was also impaired in HCC cells. CONCLUSION: The results suggested that crocin could induce autophagic apoptosis in HCC cells by inhibiting Akt/mTOR activity. This study originally revealed that autophagic apoptosis is a novel cytotoxic function of crocin, which lays the theoretical foundation for clinical application of crocin in HCC.

16.
Plant Physiol Biochem ; 123: 392-399, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29304484

RESUMO

Gray mold disease, caused by the fungus Botrytis elliptica, is one of the major diseases affecting Lilium species, and it has become a limiting factor in the production of ornamental lilies. To support selecting and breeding Botrytis-resistant cultivars, a total of 50 Lilium cultivars belonging to seven hybrid types were evaluated using a detached leaf technique for resistance to B. elliptica. Through resistance evaluations, Oriental × Trumpet and Oriental hybrid cultivars were classified as resistant lines, while Asiatic and Trumpet hybrids were classified as susceptible lines. A highly resistant (HR) Oriental hybrid, 'Sorbonne', and a highly susceptible (HS) Asiatic hybrid, 'Tresor', were selected for further study of early host-parasite interactions. After infection, B. elliptica grew faster and more easily on the leaves of 'Tresor' than on those of 'Sorbonne' during initial infection; when 'Tresor' leaves were completely infected, only a few lesions were observed on 'Sorbonne' leaves. Biochemical differences between these two cultivars were found following inoculation with B. elliptica, as shown by studies of reactive oxygen species (ROS) and the enzymatic antioxidant system. Rapid accumulation of H2O2 and ·O2- to trigger a defense response was detected in HR 'Sorbonne'. Meanwhile, higher levels of antioxidant activity, including SOD, POD and CAT, were found in HR 'Sorbonne' than in HS 'Tresor' before 48 h post-inoculation, but antioxidant activity was reduced with subsequent infection progress. These large and timely increases in ROS and antioxidant activities could be the main contributors to the high resistance of the 'Sorbonne' cultivar.


Assuntos
Botrytis/metabolismo , Quimera , Resistência à Doença , Lilium , Doenças das Plantas/microbiologia , Antioxidantes/metabolismo , Quimera/metabolismo , Quimera/microbiologia , Peróxido de Hidrogênio/metabolismo , Lilium/metabolismo , Lilium/microbiologia , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Superóxidos/metabolismo
17.
Front Plant Sci ; 8: 753, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28572808

RESUMO

MicroRNAs, as master regulators of gene expression, have been widely identified and play crucial roles in plant-pathogen interactions. A fatal pathogen, Botrytis elliptica, causes the serious folia disease of lily, which reduces production because of the high susceptibility of most cultivated species. However, the miRNAs related to Botrytis infection of lily, and the miRNA-mediated gene regulatory networks providing resistance to B. elliptica in lily remain largely unexplored. To systematically dissect B. elliptica-responsive miRNAs and their target genes, three small RNA libraries were constructed from the leaves of Lilium regale, a promising Chinese wild Lilium species, which had been subjected to mock B. elliptica treatment or B. elliptica infection for 6 and 24 h. By high-throughput sequencing, 71 known miRNAs belonging to 47 conserved families and 24 novel miRNA were identified, of which 18 miRNAs were downreguleted and 13 were upregulated in response to B. elliptica. Moreover, based on the lily mRNA transcriptome, 22 targets for 9 known and 1 novel miRNAs were identified by the degradome sequencing approach. Most target genes for elliptica-responsive miRNAs were involved in metabolic processes, few encoding different transcription factors, including ELONGATION FACTOR 1 ALPHA (EF1a) and TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR 2 (TCP2). Furthermore, the expression patterns of a set of elliptica-responsive miRNAs and their targets were validated by quantitative real-time PCR. This study represents the first transcriptome-based analysis of miRNAs responsive to B. elliptica and their targets in lily. The results reveal the possible regulatory roles of miRNAs and their targets in B. elliptica interaction, which will extend our understanding of the mechanisms of this disease in lily.

18.
J Trace Elem Med Biol ; 41: 66-74, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28347465

RESUMO

In the present study, cultured rat primary neurons were exposed to a medium containing N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), a specific cell membrane-permeant Zn2+ chelator, to establish a model of free Zn2+ deficiency in neurons. The effects of TPEN-mediated free Zn2+ ion reduction on neuronal viability and on the performance of voltage-gated sodium channels (VGSCs) and potassium channels (Kvs) were assessed. Free Zn2+ deficiency 1) markedly reduced the neuronal survival rate, 2) reduced the peak amplitude of INa, 3) shifted the INa activation curve towards depolarization, 4) modulated the sensitivity of sodium channel voltage-dependent inactivation to a depolarization voltage, and 5) increased the time course of recovery from sodium channel inactivation. In addition, free Zn2+ deficiency by TPEN notably enhanced the peak amplitude of transient outward K+ currents (IA) and delayed rectifier K+ currents (IK), as well as caused hyperpolarization and depolarization directional shifts in their steady-state activation curves, respectively. Zn2+ supplementation reversed the effects induced by TPEN. Our results indicate that free Zn2+ deficiency causes neuronal damage and alters the dynamic characteristics of VGSC and Kv currents. Thus, neuronal injury caused by free Zn2+ deficiency may correlate with its modulation of the electrophysiological properties of VGSCs and Kvs.


Assuntos
Morte Celular/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Canais de Potássio/metabolismo , Canais de Sódio/metabolismo , Zinco/deficiência , Zinco/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Condutividade Elétrica , Etilenodiaminas/administração & dosagem , Etilenodiaminas/farmacologia , Transporte de Íons/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Wistar , Zinco/administração & dosagem
19.
Environ Toxicol Pharmacol ; 50: 227-233, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28192752

RESUMO

A hypoxia/ischemia neuronal model was established in PC12 cells using oxygen-glucose deprivation (OGD). OGD-induced neuronal death, apoptosis, glutamate receptor subunit GluR2 expression, and potassium channel currents were evaluated in the present study to determine the effects of genistein in mediating the neuronal death and apoptosis induced by hypoxia and ischemia, as well as its underlying mechanism. OGD exposure reduced the cell viability, increased apoptosis, decreased the GluR2 expression, and decreased the voltage-activated potassium currents. Genistein partially reversed the effects induced by OGD. Therefore, genistein may prevent hypoxia/ischemic-induced neuronal apoptosis that is mediated by alterations in GluR2 expression and voltage-activated potassium currents.


Assuntos
Genisteína/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores de AMPA/metabolismo , Animais , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Isquemia/tratamento farmacológico , Células PC12 , Canais de Potássio/efeitos dos fármacos , Ratos
20.
Cell Mol Neurobiol ; 37(2): 235-250, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26983717

RESUMO

Hypoxia-ischemia-induced neuronal death is an important pathophysiological process that accompanies ischemic stroke and represents a major challenge in preventing ischemic stroke. To elucidate factors related to and a potential preventative mechanism of hypoxia-ischemia-induced neuronal death, primary neurons were exposed to sodium dithionite and glucose deprivation (SDGD) to mimic hypoxic-ischemic conditions. The effects of N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN), a specific Zn2+-chelating agent, on SDGD-induced neuronal death, glutamate signaling (including the free glutamate concentration and expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor (GluR2) and N-methyl-D-aspartate (NMDA) receptor subunits (NR2B), and voltage-dependent K+ and Na+ channel currents were also investigated. Our results demonstrated that TPEN significantly suppressed increases in cell death, apoptosis, neuronal glutamate release into the culture medium, NR2B protein expression, and I K as well as decreased GluR2 protein expression and Na+ channel activity in primary cultured neurons exposed to SDGD. These results suggest that TPEN could inhibit SDGD-induced neuronal death by modulating apoptosis, glutamate signaling (via ligand-gated channels such as AMPA and NMDA receptors), and voltage-gated K+ and Na+ channels in neurons. Hence, Zn2+ chelation might be a promising approach for counteracting the neuronal loss caused by transient global ischemia. Moreover, TPEN could represent a potential cell-targeted therapy.


Assuntos
Apoptose/fisiologia , Quelantes/farmacologia , Etilenodiaminas/farmacologia , Neurônios/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Canais de Sódio Disparados por Voltagem/fisiologia , Zinco/metabolismo , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Ditionita/toxicidade , Glucose/deficiência , Ácido Glutâmico/metabolismo , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...