Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 9(1): 261-270, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34590657

RESUMO

This study demonstrates enhancement of in-device electro-optic activity via a series of theory-inspired organic electro-optic (OEO) chromophores based on strong (diarylamino)phenyl electron donating moieties. These chromophores are tuned to minimize trade-offs between molecular hyperpolarizability and optical loss. Hyper-Rayleigh scattering (HRS) measurements demonstrate that these chromophores, herein described as BAH, show >2-fold improvement in ß versus standard chromophores such as JRD1, and approach that of the recent BTP and BAY chromophore families. Electric field poled bulk devices of neat and binary BAH chromophores exhibited significantly enhanced EO coefficients (r33) and poling efficiencies (r33/Ep) compared with state-of-the-art chromophores such as JRD1. The neat BAH13 devices with charge blocking layers produced very large poling efficiencies of 11.6 ± 0.7 nm2 V-2 and maximum r33 value of 1100 ± 100 pm V-1 at 1310 nm on hafnium dioxide (HfO2). These results were comparable to that of our recently reported BAY1 but with much lower loss (extinction coefficient, k), and greatly exceeding that of other previously reported OEO compounds. 3 : 1 BAH-FD : BAH13 blends showed a poling efficiency of 6.7 ± 0.3 nm2 V-2 and an even greater reduction in k. 1 : 1 BAH-BB : BAH13 showed a higher poling efficiency of 8.4 ± 0.3 nm2 V-2, which is approximately a 2.5-fold enhancement in poling efficiency vs. JRD1. Neat BAH13 was evaluated in plasmonic-organic hybrid (POH) Mach-Zehnder modulators with a phase shifter length of 10 µm and slot widths of 80 and 105 nm. In-device BAH13 achieved a maximum r33 of 208 pm V-1 at 1550 nm, which is ∼1.7 times higher than JRD1 under equivalent conditions.

2.
Nano Lett ; 21(11): 4539-4545, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34006114

RESUMO

We present a plasmonic platform featuring efficient, broadband metallic fiber-to-chip couplers that directly interface plasmonic slot waveguides, such as compact and high-speed electro-optic modulators. The metallic gratings exhibit an experimental fiber-to-slot coupling efficiency of -2.7 dB with -1.4 dB in simulations with the same coupling principle. Further, they offer a huge spectral window with a 3 dB passband of 350 nm. The technology relies on a vertically arranged layer stack, metal-insulator-metal waveguides, and fiber-to-slot couplers and is formed in only one lithography step with a minimum feature size of 250 nm. As an application example, we fabricate new modulator devices with an electro-optic organic material in the slot waveguide and reach 50 and 100 Gbit/s data modulation in the O- and C-bands within the same device. The devices' broad spectral bandwidth and their relaxed fabrication may render them suitable for experiments and applications in the scope of sensing, nonlinear optics, or telecommunications.

3.
Opt Express ; 28(6): 8601-8608, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32225481

RESUMO

100 Gb/s NRZ-OOK transmission over 14 km standard single mode fiber in the C-band is demonstrated with a simple intensity modulation and direct detection scheme. The transmission concept utilizes single sideband modulation and comprises a single differential digital-to-analog converter with adjustable phase offset, a new dual electrode plasmonic Mach-Zehnder modulator, a laser at 1537.5 nm, standard single mode fibers, a photodiode, an analog-to-digital converter, and linear offline digital signal processing. The presented SSB concept requires no DSP and complex signaling at the transmitter. The demonstrated SSB transmitter increased the possible transmission distance by a factor of 4.6 compared to a DSB transmitter. We also investigated the equalization requirements. A T/2-spaced feedforward equalizer requires 27 taps to achieve transmission over 10 km with a BER below the HD-FEC limit. In comparison to a DSB transmitter, the SSB transmitter reduced the receiver DSP complexity by a factor of 13.7.

4.
Nat Commun ; 10(1): 5550, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804476

RESUMO

Terahertz sources and detectors have enabled numerous new applications from medical to communications. Yet, most efficient terahertz detection schemes rely on complex free-space optics and typically require high-power lasers as local oscillators. Here, we demonstrate a fiber-coupled, monolithic plasmonic terahertz field detector on a silicon-photonics platform featuring a detection bandwidth of 2.5 THz with a 65 dB dynamical range. The terahertz wave is measured through its nonlinear mixing with an optical probe pulse with an average power of only 63 nW. The high efficiency of the scheme relies on the extreme confinement of the terahertz field to a small volume of 10-8(λTHz/2)3. Additionally, on-chip guided plasmonic probe beams sample the terahertz signal efficiently in this volume. The approach results in an extremely short interaction length of only 5 µm, which eliminates the need for phase matching and shows the highest conversion efficiency per unit length up to date.

5.
Opt Express ; 27(12): 16823-16832, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31252902

RESUMO

A new plasmonic Mach-Zehnder modulator is demonstrated at a bit rate of 120 Gb/s NRZ-OOK with low peak-to-peak driving voltages of 178 mVpp below the HD-FEC limit. Such record low driving voltage requirements potentially translate into an electrical drive power consumption of 862 aJ/bit. The low drive voltages have been made possible by a new differential Mach-Zehnder modulator electrode design. The differential electrode design is optimized for the balanced driving circuitry and reduces the effectively required driving voltage by a factor of four (Vπ/4). The potential of the transmitter scheme is further demonstrated by a transmission experiment over 500 m of single mode fiber at the C-band with a BER performance below the KP4 FEC limit.

6.
Nat Commun ; 10(1): 1694, 2019 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-30979888

RESUMO

Coherent optical communications provides the largest data transmission capacity with the highest spectral efficiency and therefore has a remarkable potential to satisfy today's ever-growing bandwidth demands. It relies on so-called in-phase/quadrature (IQ) electro-optic modulators that encode information on both the amplitude and the phase of light. Ideally, such IQ modulators should offer energy-efficient operation and a most compact footprint, which would allow high-density integration and high spatial parallelism. Here, we present compact IQ modulators with an active section occupying a footprint of 4 × 25 µm × 3 µm, fabricated on the silicon platform and operated with sub-1-V driving electronics. The devices exhibit low electrical energy consumptions of only 0.07 fJ bit-1 at 50 Gbit s-1, 0.3 fJ bit-1 at 200 Gbit s-1, and 2 fJ bit-1 at 400 Gbit s-1. Such IQ modulators may pave the way for application of IQ modulators in long-haul and short-haul communications alike.

7.
Nat Mater ; 18(1): 42-47, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30420671

RESUMO

The electro-optical Pockels effect is an essential nonlinear effect used in many applications. The ultrafast modulation of the refractive index is, for example, crucial to optical modulators in photonic circuits. Silicon has emerged as a platform for integrating such compact circuits, but a strong Pockels effect is not available on silicon platforms. Here, we demonstrate a large electro-optical response in silicon photonic devices using barium titanate. We verify the Pockels effect to be the physical origin of the response, with r42 = 923 pm V-1, by confirming key signatures of the Pockels effect in ferroelectrics: the electro-optic response exhibits a crystalline anisotropy, remains strong at high frequencies, and shows hysteresis on changing the electric field. We prove that the Pockels effect remains strong even in nanoscale devices, and show as a practical example data modulation up to 50 Gbit s-1. We foresee that our work will enable novel device concepts with an application area largely extending beyond communication technologies.

8.
Nature ; 556(7702): 483-486, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29695845

RESUMO

For nearly two decades, researchers in the field of plasmonics 1 -which studies the coupling of electromagnetic waves to the motion of free electrons near the surface of a metal 2 -have sought to realize subwavelength optical devices for information technology3-6, sensing7,8, nonlinear optics9,10, optical nanotweezers 11 and biomedical applications 12 . However, the electron motion generates heat through ohmic losses. Although this heat is desirable for some applications such as photo-thermal therapy, it is a disadvantage in plasmonic devices for sensing and information technology 13 and has led to a widespread view that plasmonics is too lossy to be practical. Here we demonstrate that the ohmic losses can be bypassed by using 'resonant switching'. In the proposed approach, light is coupled to the lossy surface plasmon polaritons only in the device's off state (in resonance) in which attenuation is desired, to ensure large extinction ratios between the on and off states and allow subpicosecond switching. In the on state (out of resonance), destructive interference prevents the light from coupling to the lossy plasmonic section of a device. To validate the approach, we fabricated a plasmonic electro-optic ring modulator. The experiments confirm that low on-chip optical losses, operation at over 100 gigahertz, good energy efficiency, low thermal drift and a compact footprint can be combined in a single device. Our result illustrates that plasmonics has the potential to enable fast, compact on-chip sensing and communications technologies.

9.
Science ; 358(6363): 630-632, 2017 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-29097545

RESUMO

Plasmonics provides a possible route to overcome both the speed limitations of electronics and the critical dimensions of photonics. We present an all-plasmonic 116-gigabits per second electro-optical modulator in which all the elements-the vertical grating couplers, splitters, polarization rotators, and active section with phase shifters-are included in a single metal layer. The device can be realized on any smooth substrate surface and operates with low energy consumption. Our results show that plasmonics is indeed a viable path to an ultracompact, highest-speed, and low-cost technology that might find many applications in a wide range of fields of sensing and communications because it is compatible with and can be placed on a wide variety of materials.

10.
Opt Express ; 25(3): 2627-2653, 2017 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29519106

RESUMO

The performance of highly nonlinear organic electro-optic (EO) materials incorporated into nanoscale slots is examined. It is shown that EO coefficients as large as 190 pm/V can be obtained in 150 nm wide plasmonic slot waveguides but that the coefficients decrease for narrower slots. Possible mechanism that lead to such a decrease are discussed. Monte-Carlo computer simulations are performed, confirming that chromophore-surface interactions are one important factor influencing the EO coefficient in narrow plasmonic slots. These highly nonlinear materials are of particular interest for applications in optical modulators. However, in modulators the key parameters are the voltage-length product UπL and the insertion loss rather than the linear EO coefficients. We show record-low voltage-length products of 70 Vµm and 50 Vµm for slot widths in the order of 50 nm for the materials JRD1 and DLD164, respectively. This is because the nonlinear interaction is enhanced in narrow slot and thereby compensates for the reduced EO coefficient. Likewise, it is found that lowest insertion losses are observed for slot widths in the range 60 to 100 nm.

11.
Nano Lett ; 15(12): 8342-6, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26570995

RESUMO

A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35,000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...