Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 43(14): 855-72, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21586670

RESUMO

Hypoxia is a widely occurring condition experienced by diverse organisms under numerous physiological and disease conditions. To probe the molecular mechanisms underlying hypoxia responses and tolerance, we performed a genome-wide screen to identify mutants with enhanced hypoxia tolerance in the model eukaryote, the yeast Saccharomyces cerevisiae. Yeast provides an excellent model for genomic and proteomic studies of hypoxia. We identified five genes whose deletion significantly enhanced hypoxia tolerance. They are RAI1, NSR1, BUD21, RPL20A, and RSM22, all of which encode functions involved in ribosome biogenesis. Further analysis of the deletion mutants showed that they minimized hypoxia-induced changes in polyribosome profiles and protein synthesis. Strikingly, proteomic analysis by using the iTRAQ profiling technology showed that a substantially fewer number of proteins were changed in response to hypoxia in the deletion mutants, compared with the parent strain. Computational analysis of the iTRAQ data indicated that the activities of a group of regulators were regulated by hypoxia in the wild-type parent cells, but such regulation appeared to be diminished in the deletion strains. These results show that the deletion of one of the genes involved in ribosome biogenesis leads to the reversal of hypoxia-induced changes in gene expression and related regulators. They suggest that modifying ribosomal function is an effective mechanism to minimize hypoxia-induced specific protein changes and to confer hypoxia tolerance. These results may have broad implications in understanding hypoxia responses and tolerance in diverse eukaryotes ranging from yeast to humans.


Assuntos
Adaptação Fisiológica/genética , Deleção de Genes , Genes Fúngicos/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Anaerobiose/efeitos dos fármacos , Anaerobiose/genética , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Genes Reporter , Polirribossomos/efeitos dos fármacos , Polirribossomos/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Proteômica , RNA Ribossômico/metabolismo , Elementos de Resposta/genética , Ribossomos/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tunicamicina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
2.
Development ; 136(17): 2945-54, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19641016

RESUMO

PTF1-J is a trimeric transcription factor complex essential for generating the correct balance of GABAergic and glutamatergic interneurons in multiple regions of the nervous system, including the dorsal horn of the spinal cord and the cerebellum. Although the components of PTF1-J have been identified as the basic helix-loop-helix (bHLH) factor Ptf1a, its heterodimeric E-protein partner, and Rbpj, no neural targets are known for this transcription factor complex. Here we identify the neuronal differentiation gene Neurog2 (Ngn2, Math4A, neurogenin 2) as a direct target of PTF1-J. A Neurog2 dorsal neural tube enhancer localized 3' of the Neurog2 coding sequence was identified that requires a PTF1-J binding site for dorsal activity in mouse and chick neural tube. Gain and loss of Ptf1a function in vivo demonstrate its role in Neurog2 enhancer activity. Furthermore, chromatin immunoprecipitation from neural tube tissue demonstrates that Ptf1a is bound to the Neurog2 enhancer. Thus, Neurog2 expression is directly regulated by the PTF1-J complex, identifying Neurog2 as the first neural target of Ptf1a and revealing a bHLH transcription factor cascade functioning in the specification of GABAergic neurons in the dorsal spinal cord and cerebellum.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/embriologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Diferenciação Celular/fisiologia , Embrião de Galinha , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/genética , Transdução de Sinais/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
3.
Dev Biol ; 328(2): 529-40, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19389376

RESUMO

Delta-like 3 (Dll3) is a Delta family member expressed broadly in the developing nervous system as neural progenitor cells initiate differentiation. A proximal promoter sequence for Dll3 is conserved across multiple species and is sufficient to direct GFP expression in a Dll3-like pattern in the neural tube of transgenic mice. This promoter contains multiple E-boxes, the consensus binding site for bHLH factors. Dll3 expression and the activity of the Dll3-promoter in the dorsal neural tube depends on the basic helix-loop-helix (bHLH) transcription factors Ascl1 (Mash1) and Neurog2 (Ngn2). Mutations in each E-box identified in the Dll3-promoter allowed distinct enhancer or repressor properties to be assigned to each site individually or in combination. In addition, each E-box has distinct characteristics relative to binding of bHLH factors Ascl1, Neurog1, and Neurog2. Surprisingly, novel Ascl1 containing DNA binding complexes are identified that interact with specific E-box sites within the Dll3-promoter in vitro. These complexes include Ascl1/Ascl1 homodimers and Ascl1/Neurog2 heterodimers, complexes that in some cases require additional undefined factors for efficient DNA binding. Thus, a complex interplay of E-box binding proteins spatially and temporally regulate Dll3 levels during neural tube development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Tubo Neural/fisiologia , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Dimerização , Elementos E-Box , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Tubo Neural/embriologia , Neurônios/fisiologia , Regiões Promotoras Genéticas , Células-Tronco/fisiologia
4.
Genes Dev ; 22(2): 166-78, 2008 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-18198335

RESUMO

Neural networks are balanced by inhibitory and excitatory neuronal activity. The formation of these networks is initially generated through neuronal subtype specification controlled by transcription factors. The basic helix-loop-helix (bHLH) transcription factor Ptf1a is essential for the generation of GABAergic inhibitory neurons in the dorsal spinal cord, cerebellum, and retina. The transcription factor Rbpj is a transducer of the Notch signaling pathway that functions to maintain neural progenitor cells. Here we demonstrate Ptf1a and Rbpj interact in a complex that is required in vivo for specification of the GABAergic neurons, a function that cannot be substituted by the classical form of the bHLH heterodimer with E-protein or Notch signaling through Rbpj. We show that a mutant form of Ptf1a without the ability to bind Rbpj, while retaining its ability to interact with E-protein, is incapable of inducing GABAergic (Pax2)- and suppressing glutamatergic (Tlx3)-expressing cells in the chick and mouse neural tube. Moreover, we use an Rbpj conditional mutation to demonstrate that Rbpj function is essential for GABAergic specification, and that this function is independent of the Notch signaling pathway. Together, these findings demonstrate the requirement for a Ptf1a-Rbpj complex in controlling the balanced formation of inhibitory and excitatory neurons in the developing spinal cord, and point to a novel Notch-independent function for Rbpj in nervous system development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Neurônios/fisiologia , Receptores Notch/fisiologia , Fatores de Transcrição/fisiologia , Ácido gama-Aminobutírico/biossíntese , Animais , Cerebelo/citologia , Embrião de Galinha , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/fisiologia , Camundongos , Mutação , Transdução de Sinais , Medula Espinal/citologia , Transfecção
5.
Mol Cell Biol ; 26(1): 117-30, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16354684

RESUMO

PTF1 is a trimeric transcription factor essential to the development of the pancreas and to the maintenance of the differentiated state of the adult exocrine pancreas. It comprises a dimer of P48/PTF1a (a pancreas and neural restricted basic helix-loop-helix [bHLH] protein) and a class A bHLH protein, together with a third protein that we show can be either the mammalian Suppressor of Hairless (RBP-J) or its paralogue, RBP-L. In mature acinar cells, PTF1 exclusively contains the RBP-L isoform and is bound to the promoters of acinar specific genes. P48 interacts with the RBP subunit primarily through two short conserved tryptophan-containing motifs, similar to the motif of the Notch intracellular domain (NotchIC) that interacts with RBP-J. The transcriptional activities of the J and L forms of PTF1 are independent of Notch signaling, because P48 occupies the NotchIC docking site on RBP-J and RBP-L does not bind the NotchIC. Mutations that delete one or both of the RBP-interacting motifs of P48 eliminate RBP-binding and are associated with a human genetic disorder characterized by pancreatic and cerebellar agenesis, which indicates that the association of P48 and RBPs is required for proper embryonic development. The presence of related peptide motifs in other transcription factors indicates a broader Notch-independent function for RBPJ/SU(H).


Assuntos
Proteínas de Ligação a DNA/metabolismo , Sequências Hélice-Alça-Hélice , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Pâncreas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Células Cultivadas , Imunoprecipitação da Cromatina , Sequência Conservada , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Sequências Hélice-Alça-Hélice/genética , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Camundongos , Dados de Sequência Molecular , Receptores Notch/genética , Receptores Notch/metabolismo , Deleção de Sequência , Fatores de Transcrição/genética , Transcrição Gênica
6.
Development ; 132(24): 5461-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16291784

RESUMO

Mutations in the human and mouse PTF1A/Ptf1a genes result in permanent diabetes mellitus and cerebellar agenesis. We show that Ptf1a is present in precursors to GABAergic neurons in spinal cord dorsal horn as well as the cerebellum. A null mutation in Ptf1a reveals its requirement for the dorsal horn GABAergic neurons. Specifically, Ptf1a is required for the generation of early-born (dI4, E10.5) and late-born (dIL(A), E12.5) dorsal interneuron populations identified by homeodomain factors Lhx1/5 and Pax2. Furthermore, in the absence of Ptf1a, the dI4 dorsal interneurons trans-fate to dI5 (Lmx1b(+)), and the dIL(A) to dIL(B) (Lmx1b(+);Tlx3(+)). This mis-specification of neurons results in a complete loss of inhibitory GABAergic neurons and an increase in the excitatory glutamatergic neurons in the dorsal horn of the spinal cord by E16.5. Thus, Ptf1a function is essential for GABAergic over glutamatergic neuronal cell fates in the developing spinal cord, and provides an important genetic link between inhibitory and excitatory interneuron development.


Assuntos
Neurônios/fisiologia , Células do Corno Posterior/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem da Célula , Cerebelo/embriologia , Cerebelo/metabolismo , Ácido Glutâmico/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/citologia , Interneurônios/fisiologia , Camundongos , Camundongos Mutantes , Mutação , Neurônios/citologia , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Células do Corno Posterior/citologia , Células do Corno Posterior/embriologia , Fatores de Transcrição/genética , Ácido gama-Aminobutírico/fisiologia
7.
Development ; 132(12): 2709-19, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15901662

RESUMO

The dorsal spinal cord contains a diverse array of neurons that connect sensory input from the periphery to spinal cord motoneurons and brain. During development, six dorsal neuronal populations (dI1-dI6) have been defined by expression of homeodomain factors and position in the dorsoventral axis. The bHLH transcription factors Mash1 and Ngn2 have distinct roles in specification of these neurons. Mash1 is necessary and sufficient for generation of most dI3 and all dI5 neurons. Unexpectedly, dI4 neurons are derived from cells expressing low levels or no Mash1, and this population increases in the Mash1 mutant. Ngn2 is not required for any specific neuronal cell type but appears to modulate the composition of neurons that form. In the absence of Ngn2, there is an increase in the number of dI3 and dI5 neurons, in contrast to the effects produced by activity of Mash1. Mash1 is epistatic to Ngn2, and, unlike the relationship between other neural bHLH factors, cross-repression of expression is not detected. Thus, bHLH factors, particularly Mash1 and related family members Math1 and Ngn1, provide a code for generating neuronal diversity in the dorsal spinal cord with Ngn2 serving to modulate the number of neurons in each population formed.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Medula Espinal/citologia , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Padronização Corporal/genética , Diferenciação Celular , Proteínas de Ligação a DNA/genética , Epistasia Genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Medula Espinal/embriologia , Fatores de Transcrição/genética
8.
Genetics ; 168(1): 77-87, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15454528

RESUMO

Group II intron homing in yeast mitochondria is initiated at active target sites by activities of intron-encoded ribonucleoprotein (RNP) particles, but is completed by competing recombination and repair mechanisms. Intron aI1 transposes in haploid cells at low frequency to target sites in mtDNA that resemble the exon 1-exon 2 (E1/E2) homing site. This study investigates a system in which aI1 can transpose in crosses (i.e., in trans). Surprisingly, replacing an inefficient transposition site with an active E1/E2 site supports <1% transposition of aI1. Instead, the ectopic site was mainly converted to the related sequence in donor mtDNA in a process we call "abortive transposition." Efficient abortive events depend on sequences in both E1 and E2, suggesting that most events result from cleavage of the target site by the intron RNP particles, gapping, and recombinational repair using homologous sequences in donor mtDNA. A donor strain that lacks RT activity carries out little abortive transposition, indicating that cDNA synthesis actually promotes abortive events. We also infer that some intermediates abort by ejecting the intron RNA from the DNA target by forward splicing. These experiments provide new insights to group II intron transposition and homing mechanisms in yeast mitochondria.


Assuntos
Elementos de DNA Transponíveis/genética , Rearranjo Gênico/genética , Mitocôndrias/genética , Modelos Genéticos , Ribonucleoproteínas/metabolismo , Leveduras/genética , Cruzamentos Genéticos , Ciclo-Oxigenase 1 , DNA Complementar/genética , Íntrons/genética , Polimorfismo de Fragmento de Restrição , Prostaglandina-Endoperóxido Sintases/genética , Ribonucleoproteínas/genética
9.
Development ; 131(6): 1319-30, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14993186

RESUMO

Many members of the basic helix-loop-helix (bHLH) family of transcription factors play pivotal roles in the development of a variety of tissues and organisms. We identify activities for the neural bHLH proteins Mash1 and Math1 in inducing neuronal differentiation, and in inducing the formation of distinct dorsal interneuron subtypes in the chick neural tube. Although both factors induce neuronal differentiation, each factor has a distinct activity in the type of dorsal interneuron that forms, with overexpression of Math1 increasing dI1 interneurons, and Mash1 increasing dI3 interneurons. Math1 and Mash1 function as transcriptional activators for both of these functions. Furthermore, we define discrete domains within the bHLH motif that are required for these different activities in neural development. Helix 1 of the Mash1 HLH domain is necessary for Mash1 to be able to promote neuronal differentiation, and is sufficient to confer this activity to the non-neural bHLH factor MyoD. In contrast, helix 2 of Math1, and both helix 1 and 2 of Mash1, are the domains required for the neuronal specification activities of these factors. The requirement for distinct domains within the HLH motif of Mash1 and Math1 for driving neuronal differentiation and cell-type specification probably reflects the importance of unique protein-protein interactions involved in these functions.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Neurônios/fisiologia , Fatores de Transcrição/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Sistema Nervoso Central/embriologia , Sistema Nervoso Central/metabolismo , Embrião de Galinha , Dimerização , Sequências Hélice-Alça-Hélice , Modelos Moleculares , Estrutura Terciária de Proteína , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...