Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Exp Med ; 219(3)2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35226042

RESUMO

Delivery of biotherapeutics across the blood-brain barrier (BBB) is a challenge. Many approaches fuse biotherapeutics to platforms that bind the transferrin receptor (TfR), a brain endothelial cell target, to facilitate receptor-mediated transcytosis across the BBB. Here, we characterized the pharmacological behavior of two distinct TfR-targeted platforms fused to iduronate 2-sulfatase (IDS), a lysosomal enzyme deficient in mucopolysaccharidosis type II (MPS II), and compared the relative brain exposures and functional activities of both approaches in mouse models. IDS fused to a moderate-affinity, monovalent TfR-binding enzyme transport vehicle (ETV:IDS) resulted in widespread brain exposure, internalization by parenchymal cells, and significant substrate reduction in the CNS of an MPS II mouse model. In contrast, IDS fused to a standard high-affinity bivalent antibody (IgG:IDS) resulted in lower brain uptake, limited biodistribution beyond brain endothelial cells, and reduced brain substrate reduction. These results highlight important features likely to impact the clinical development of TfR-targeting platforms in MPS II and potentially other CNS diseases.


Assuntos
Iduronato Sulfatase , Mucopolissacaridose II , Receptores da Transferrina , Proteínas Recombinantes de Fusão , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Iduronato Sulfatase/metabolismo , Iduronato Sulfatase/farmacologia , Lisossomos/metabolismo , Camundongos , Mucopolissacaridose II/metabolismo , Receptores da Transferrina/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Distribuição Tecidual
3.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622797

RESUMO

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder caused by deficiency of the iduronate-2-sulfatase (IDS) enzyme, resulting in cellular accumulation of glycosaminoglycans (GAGs) throughout the body. Treatment of MPS II remains a considerable challenge as current enzyme replacement therapies do not adequately control many aspects of the disease, including skeletal and neurological manifestations. We developed an IDS transport vehicle (ETV:IDS) that is engineered to bind to the transferrin receptor; this design facilitates receptor-mediated transcytosis of IDS across the blood-brain barrier and improves its distribution into the brain while maintaining distribution to peripheral tissues. Here we show that chronic systemic administration of ETV:IDS in a mouse model of MPS II reduced levels of peripheral and central nervous system GAGs, microgliosis, and neurofilament light chain, a biomarker of neuronal injury. Additionally, ETV:IDS rescued auricular and skeletal abnormalities when introduced in adult MPS II mice. These effects were accompanied by improvements in several neurobehavioral domains, including motor skills, sensorimotor gating, and learning and memory. Together, these results highlight the therapeutic potential of ETV:IDS for treating peripheral and central abnormalities in MPS II. DNL310, an investigational ETV:IDS molecule, is currently in clinical trials as a potential treatment for patients with MPS II.


Assuntos
Barreira Hematoencefálica/metabolismo , Terapia de Reposição de Enzimas/métodos , Iduronato Sulfatase/administração & dosagem , Mucopolissacaridose II/tratamento farmacológico , Receptores da Transferrina/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Glicosaminoglicanos/metabolismo , Iduronato Sulfatase/genética , Memória/efeitos dos fármacos , Camundongos , Camundongos Knockout , Destreza Motora/efeitos dos fármacos , Mucopolissacaridose II/genética , Mucopolissacaridose II/metabolismo , Mucopolissacaridose II/fisiopatologia , Fenótipo , Filtro Sensorial/efeitos dos fármacos , Esqueleto/efeitos dos fármacos , Aprendizagem Espacial/efeitos dos fármacos , Transcitose
4.
Cell ; 184(18): 4651-4668.e25, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450028

RESUMO

GRN mutations cause frontotemporal dementia (GRN-FTD) due to deficiency in progranulin (PGRN), a lysosomal and secreted protein with unclear function. Here, we found that Grn-/- mice exhibit a global deficiency in bis(monoacylglycero)phosphate (BMP), an endolysosomal phospholipid we identified as a pH-dependent PGRN interactor as well as a redox-sensitive enhancer of lysosomal proteolysis and lipolysis. Grn-/- brains also showed an age-dependent, secondary storage of glucocerebrosidase substrate glucosylsphingosine. We investigated a protein replacement strategy by engineering protein transport vehicle (PTV):PGRN-a recombinant protein linking PGRN to a modified Fc domain that binds human transferrin receptor for enhanced CNS biodistribution. PTV:PGRN rescued various Grn-/- phenotypes in primary murine macrophages and human iPSC-derived microglia, including oxidative stress, lysosomal dysfunction, and endomembrane damage. Peripherally delivered PTV:PGRN corrected levels of BMP, glucosylsphingosine, and disease pathology in Grn-/- CNS, including microgliosis, lipofuscinosis, and neuronal damage. PTV:PGRN thus represents a potential biotherapeutic for GRN-FTD.


Assuntos
Produtos Biológicos/uso terapêutico , Encéfalo/metabolismo , Doenças por Armazenamento dos Lisossomos/terapia , Progranulinas/uso terapêutico , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Endossomos/metabolismo , Feminino , Demência Frontotemporal/sangue , Demência Frontotemporal/líquido cefalorraquidiano , Gliose/complicações , Gliose/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação/patologia , Metabolismo dos Lipídeos , Lipofuscina/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Degeneração Neural/patologia , Fenótipo , Progranulinas/deficiência , Progranulinas/metabolismo , Receptores Imunológicos/metabolismo , Receptores da Transferrina/metabolismo , Distribuição Tecidual
5.
Antimicrob Agents Chemother ; 64(11)2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32868329

RESUMO

ABI-H0731, a first-generation hepatitis B virus (HBV) core protein inhibitor, has demonstrated effective antiviral activity in chronic hepatitis B (CHB) patients in a phase 1b clinical trial and is currently being further evaluated in phase 2 clinical trials. Here, we report the preclinical profile of ABI-H0731. In in vitro cell culture systems (HepG2-derived cell lines HepAD38 and HepG2-NTCP and primary human hepatocytes [PHHs]), ABI-H0731 exhibited selective inhibition of HBV DNA replication (50% effective concentration [EC50] from 173 nM to 307 nM). Most importantly, ABI-H0731 suppressed covalently closed circular DNA (cccDNA) formation in two de novo infection models with EC50s from 1.84 µM to 7.3 µM. Mechanism-of-action studies indicated that ABI-H0731 is a direct-acting antiviral that targets HBV core protein, preventing HBV pregenomic RNA (pgRNA) encapsidation and subsequent DNA replication. The combination of ABI-H0731 with entecavir appears to decrease viral DNA faster and deeper than nucleoside/nucleotide analogue (NrtI) therapy alone. In addition, ABI-H0731 disrupts incoming nucleocapsids, causing the premature release of relaxed circular DNA (rcDNA) before delivery to the nucleus, and thus prevents new cccDNA formation. ABI-H0731 exhibits pangenotypic activity and is additive to moderately synergistic when combined with an NrtI. In addition to its potency and novel mechanism of action, ABI-H0731 possesses drug-like properties and a preclinical pharmacokinetic profile supportive of once-daily dosing in patients with CHB. Taken together, these data support the ongoing clinical development of ABI-H0731 as a treatment for HBV.


Assuntos
Hepatite B Crônica , Hepatite B , Hepatite C Crônica , Antivirais/farmacologia , Antivirais/uso terapêutico , DNA Circular/genética , DNA Viral/genética , Hepatite B/tratamento farmacológico , Vírus da Hepatite B/genética , Hepatite B Crônica/tratamento farmacológico , Humanos , Proteínas do Core Viral/genética , Replicação Viral
6.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751752

RESUMO

We recently developed a blood-brain barrier (BBB)-penetrating enzyme transport vehicle (ETV) fused to the lysosomal enzyme iduronate 2-sulfatase (ETV:IDS) and demonstrated its ability to reduce glycosaminoglycan (GAG) accumulation in the brains of a mouse model of mucopolysaccharidosis (MPS) II. To accurately quantify GAGs, we developed a plate-based high-throughput enzymatic digestion assay coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) to simultaneously measure heparan sulfate and dermatan sulfate derived disaccharides in tissue, cerebrospinal fluid (CSF) and individual cell populations isolated from mouse brain. The method offers ultra-high sensitivity enabling quantitation of specific GAG species in as low as 100,000 isolated neurons and a low volume of CSF. With an LOD at 3 ng/mL and LLOQs at 5-10 ng/mL, this method is at least five times more sensitive than previously reported approaches. Our analysis demonstrated that the accumulation of CSF and brain GAGs are in good correlation, supporting the potential use of CSF GAGs as a surrogate biomarker for brain GAGs. The bioanalytical method was qualified through the generation of standard curves in matrix for preclinical studies of CSF, demonstrating the feasibility of this assay for evaluating therapeutic effects of ETV:IDS in future studies and applications in a wide variety of MPS disorders.


Assuntos
Biomarcadores/metabolismo , Glicosaminoglicanos/isolamento & purificação , Iduronato Sulfatase/genética , Mucopolissacaridose II/diagnóstico , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Cromatografia Líquida , Dermatan Sulfato/farmacologia , Dissacarídeos/química , Modelos Animais de Doenças , Glicosaminoglicanos/genética , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/farmacologia , Humanos , Iduronato Sulfatase/metabolismo , Camundongos , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Espectrometria de Massas em Tandem
7.
Sci Transl Med ; 12(545)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461331

RESUMO

Most lysosomal storage diseases (LSDs) involve progressive central nervous system (CNS) impairment, resulting from deficiency of a lysosomal enzyme. Treatment of neuronopathic LSDs remains a considerable challenge, as approved intravenously administered enzyme therapies are ineffective in modifying CNS disease because they do not effectively cross the blood-brain barrier (BBB). We describe a therapeutic platform for increasing the brain exposure of enzyme replacement therapies. The enzyme transport vehicle (ETV) is a lysosomal enzyme fused to an Fc domain that has been engineered to bind to the transferrin receptor, which facilitates receptor-mediated transcytosis across the BBB. We demonstrate that ETV fusions containing iduronate 2-sulfatase (ETV:IDS), the lysosomal enzyme deficient in mucopolysaccharidosis type II, exhibited high intrinsic activity and degraded accumulated substrates in both IDS-deficient cell and in vivo models. ETV substantially improved brain delivery of IDS in a preclinical model of disease, enabling enhanced cellular distribution to neurons, astrocytes, and microglia throughout the brain. Improved brain exposure for ETV:IDS translated to a reduction in accumulated substrates in these CNS cell types and peripheral tissues and resulted in a complete correction of downstream disease-relevant pathologies in the brain, including secondary accumulation of lysosomal lipids, perturbed gene expression, neuroinflammation, and neuroaxonal damage. These data highlight the therapeutic potential of the ETV platform for LSDs and provide preclinical proof of concept for TV-enabled therapeutics to treat CNS diseases more broadly.


Assuntos
Barreira Hematoencefálica , Iduronato Sulfatase , Animais , Encéfalo , Modelos Animais de Doenças , Terapia de Reposição de Enzimas , Lisossomos , Camundongos
8.
Sci Transl Med ; 12(545)2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461332

RESUMO

Effective delivery of protein therapeutics to the central nervous system (CNS) has been greatly restricted by the blood-brain barrier (BBB). We describe the development of a BBB transport vehicle (TV) comprising an engineered Fc fragment that exploits receptor-mediated transcytosis for CNS delivery of biotherapeutics by binding a highly expressed brain endothelial cell target. TVs were engineered using directed evolution to bind the apical domain of the human transferrin receptor (hTfR) without the use of amino acid insertions, deletions, or unnatural appendages. A crystal structure of the TV-TfR complex revealed the TV binding site to be away from transferrin and FcRn binding sites, which was further confirmed experimentally in vitro and in vivo. Recombinant expression of TVs fused to anti-ß-secretase (BACE1) Fabs yielded antibody transport vehicle (ATV) molecules with native immunoglobulin G (IgG) structure and stability. Peripheral administration of anti-BACE1 ATVs to hTfR-engineered mice and cynomolgus monkeys resulted in substantially improved CNS uptake and sustained pharmacodynamic responses. The TV platform readily accommodates numerous additional configurations, including bispecific antibodies and protein fusions, yielding a highly modular CNS delivery platform.


Assuntos
Secretases da Proteína Precursora do Amiloide , Barreira Hematoencefálica , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Haplorrinos/metabolismo , Fragmentos Fc das Imunoglobulinas , Camundongos , Receptores da Transferrina/metabolismo
9.
J Clin Invest ; 128(5): 2144-2155, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29600961

RESUMO

The apolipoprotein E E4 allele of the APOE gene is the strongest genetic factor for late-onset Alzheimer disease (LOAD). There is compelling evidence that apoE influences Alzheimer disease (AD) in large part by affecting amyloid ß (Aß) aggregation and clearance; however, the molecular mechanism underlying these findings remains largely unknown. Herein, we tested whether anti-human apoE antibodies can decrease Aß pathology in mice producing both human Aß and apoE4, and investigated the mechanism underlying these effects. We utilized APPPS1-21 mice crossed to apoE4-knockin mice expressing human apoE4 (APPPS1-21/APOE4). We discovered an anti-human apoE antibody, anti-human apoE 4 (HAE-4), that specifically recognizes human apoE4 and apoE3 and preferentially binds nonlipidated, aggregated apoE over the lipidated apoE found in circulation. HAE-4 also binds to apoE in amyloid plaques in unfixed brain sections and in living APPPS1-21/APOE4 mice. When delivered centrally or by peripheral injection, HAE-4 reduced Aß deposition in APPPS1-21/APOE4 mice. Using adeno-associated virus to express 2 different full-length anti-apoE antibodies in the brain, we found that HAE antibodies decreased amyloid accumulation, which was dependent on Fcγ receptor function. These data support the hypothesis that a primary mechanism for apoE-mediated plaque formation may be a result of apoE aggregation, as preferentially targeting apoE aggregates with therapeutic antibodies reduces Aß pathology and may represent a selective approach to treat AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Anticorpos Monoclonais Murinos/farmacologia , Apolipoproteína E4/antagonistas & inibidores , Placa Amiloide/tratamento farmacológico , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Apolipoproteína E3/antagonistas & inibidores , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Humanos , Camundongos , Camundongos Knockout , Placa Amiloide/genética , Placa Amiloide/metabolismo , Placa Amiloide/patologia
10.
J Med Chem ; 59(15): 7252-67, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27411843

RESUMO

Optimization of the potency and pharmacokinetic profile of 2,3,4-trisubstituted quinoline, 4, led to the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 6a (AM-0687) and 7 (AM-1430). On the basis of their improved profile, these analogs were selected for in vivo pharmacodynamic (PD) and efficacy experiments in animal models of inflammation. The in vivo PD studies, which were carried out in a mouse pAKT inhibition animal model, confirmed the observed potency of 6a and 7 in biochemical and cellular assays. Efficacy experiments in a keyhole limpet hemocyanin model in rats demonstrated that administration of either 6a or 7 resulted in a strong dose-dependent reduction of IgG and IgM specific antibodies. The excellent in vitro and in vivo profiles of these analogs make them suitable for further development.


Assuntos
Descoberta de Drogas , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Quinolinas/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridinas/síntese química , Piridinas/química , Quinolinas/síntese química , Quinolinas/química , Relação Estrutura-Atividade
11.
J Med Chem ; 59(1): 431-47, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26652588

RESUMO

Lead optimization efforts resulted in the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 1 (AM-8508) and 2 (AM-9635), with good pharmacokinetic properties. The compounds inhibit B cell receptor (BCR)-mediated AKT phosphorylation (pAKT) in PI3Kδ-dependent in vitro cell based assays. These compounds which share a benzimidazole bicycle are effective when administered in vivo at unbound concentrations consistent with their in vitro cell potency as a consequence of improved unbound drug concentration with lower unbound clearance. Furthermore, the compounds demonstrated efficacy in a Keyhole Limpet Hemocyanin (KLH) study in rats, where the blockade of PI3Kδ activity by inhibitors 1 and 2 led to effective inhibition of antigen-specific IgG and IgM formation after immunization with KLH.


Assuntos
Benzimidazóis/síntese química , Benzimidazóis/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Animais , Linfócitos B/efeitos dos fármacos , Cristalografia por Raios X , Hemocianinas/efeitos dos fármacos , Humanos , Imunoglobulina G/efeitos dos fármacos , Imunoglobulina M/efeitos dos fármacos , Camundongos , Modelos Moleculares , Ratos , Relação Estrutura-Atividade
12.
J Pharmacol Exp Ther ; 353(1): 119-31, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25653417

RESUMO

Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as an attractive therapeutic target for cardiovascular disease. Monoclonal antibodies (mAbs) that bind PCSK9 and prevent PCSK9:low-density lipoprotein receptor complex formation reduce serum low-density lipoprotein-cholesterol (LDL-C) in vivo. PCSK9-mediated lysosomal degradation of bound mAb, however, dramatically reduces mAb exposure and limits duration of effect. Administration of high-affinity mAb1:PCSK9 complex (1:2) to mice resulted in significantly lower mAb1 exposure compared with mAb1 dosed alone in normal mice or in PCSK9 knockout mice lacking antigen. To identify mAb-binding characteristics that minimize lysosomal disposition, the pharmacokinetic behavior of four mAbs representing a diverse range of PCSK9-binding affinities at neutral (serum) and acidic (endosomal) pH was evaluated in cynomolgus monkeys. Results revealed an inverse correlation between affinity and both mAb exposure and duration of LDL-C lowering. High-affinity mAb1 exhibited the lowest exposure and shortest duration of action (6 days), whereas mAb2 displayed prolonged exposure and LDL-C reduction (51 days) as a consequence of lower affinity and pH-sensitive PCSK9 binding. mAbs with shorter endosomal PCSK9:mAb complex dissociation half-lives (<20 seconds) produced optimal exposure-response profiles. Interestingly, incorporation of previously reported Fc-region amino acid substitutions or novel loop-insertion peptides that enhance in vitro neonatal Fc receptor binding, led to only modest pharmacokinetic improvements for mAbs with pH-dependent PCSK9 binding, with only limited augmentation of pharmacodynamic activity relative to native mAbs. A pivotal role for PCSK9 in mAb clearance was demonstrated, more broadly suggesting that therapeutic mAb-binding characteristics require optimization based on target pharmacology.


Assuntos
Anticorpos Monoclonais/farmacologia , LDL-Colesterol/sangue , Pró-Proteína Convertases/metabolismo , Serina Endopeptidases/metabolismo , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/farmacocinética , Humanos , Concentração de Íons de Hidrogênio , Fragmentos Fc das Imunoglobulinas/genética , Macaca mulatta , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pró-Proteína Convertase 9 , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/imunologia , Ligação Proteica , Receptores Fc/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/imunologia
14.
J Med Chem ; 58(1): 480-511, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25469863

RESUMO

The development and optimization of a series of quinolinylpurines as potent and selective PI3Kδ kinase inhibitors with excellent physicochemical properties are described. This medicinal chemistry effort led to the identification of 1 (AMG319), a compound with an IC50 of 16 nM in a human whole blood assay (HWB), excellent selectivity over a large panel of protein kinases, and a high level of in vivo efficacy as measured by two rodent disease models of inflammation.


Assuntos
Adenosina/farmacologia , Doenças Autoimunes/prevenção & controle , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Inflamação/prevenção & controle , Inibidores de Proteínas Quinases/farmacologia , Quinolinas/farmacologia , Adenosina/química , Adenosina/metabolismo , Animais , Células Cultivadas , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Cristalografia por Raios X , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Humanos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Quinolinas/química , Quinolinas/metabolismo , Ratos Endogâmicos Lew , Células Sf9 , Relação Estrutura-Atividade
15.
J Med Chem ; 55(17): 7667-85, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22876881

RESUMO

Structure-based rational design led to the synthesis of a novel series of potent PI3K inhibitors. The optimized pyrrolopyridine analogue 63 was a potent and selective PI3Kß/δ dual inhibitor that displayed suitable physicochemical properties and pharmacokinetic profile for animal studies. Analogue 63 was found to be efficacious in animal models of inflammation including a keyhole limpet hemocyanin (KLH) study and a collagen-induced arthritis (CIA) disease model of rheumatoid arthritis. These studies highlight the potential therapeutic value of inhibiting both the PI3Kß and δ isoforms in the treatment of a number of inflammatory diseases.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Modelos Moleculares
16.
Drug Metab Dispos ; 40(7): 1429-40, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22517972

RESUMO

CYP3A4-mediated biotransformation of (R)-N-(1-(3-(4-ethoxyphenyl)-4-oxo-3,4-dihydropyrido[2,3-d]pyrimidin-2-yl)ethyl)-N-(pyridin-3-ylmethyl)-2-(4-(trifluoromethoxy)phenyl)acetamide (AMG 487) was previously shown to generate an inhibitory metabolite linked to dose- and time-dependent pharmacokinetics in humans. Although in vitro activity loss assays failed to demonstrate CYP3A4 time-dependent inhibition (TDI) with AMG 487, its M2 phenol metabolite readily produced TDI when remaining activity was assessed using either midazolam or testosterone (K(I) = 0.73-0.74 µM, k(inact) = 0.088-0.099 min(-1)). TDI investigations using an IC(50) shift method successfully produced inhibition attributable to AMG 487, but only when preincubations were extended from 30 to 90 min. The shift magnitude was ∼3× for midazolam activity, but no shift was observed for testosterone activity. Subsequent partition ratio determinations conducted for M2 using recombinant CYP3A4 showed that inactivation was a relatively inefficient process (r = 36). CYP3A4-mediated biotransformation of [(3)H]M2 in the presence of GSH led to identification of two new metabolites, M4 and M5, which shifted focus away from M2 being directly responsible for TDI. M4 (hydroxylated M2) was further metabolized to form reactive intermediates that, upon reaction with GSH, produced isomeric adducts, collectively designated M5. Incubations conducted in the presence of [(18)O]H(2)O confirmed incorporation of oxygen from O(2) for the majority of M4 and M5 formed (>75%). Further evidence of a primary role for M4 in CYP3A4 TDI was generated by protein labeling and proteolysis experiments, in which M4 was found to be covalently bound to Cys239 of CYP3A4. These investigations confirmed a primarily role for M4 in CYP3A4 inactivation, suggesting that a more complex metabolic pathway was responsible for generation of inhibitory metabolites affecting AMG 487 human pharmacokinetics.


Assuntos
Acetamidas/farmacologia , Acetamidas/farmacocinética , Citocromo P-450 CYP3A/metabolismo , Pirimidinonas/farmacologia , Pirimidinonas/farmacocinética , Receptores CXCR3/antagonistas & inibidores , Biotransformação , Humanos , Redes e Vias Metabólicas , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , Midazolam/farmacocinética , Oxigênio/metabolismo , Proteólise , Quinonas/farmacocinética , Receptores CXCR3/metabolismo , Testosterona/metabolismo , Testosterona/farmacocinética
17.
Bioorg Med Chem Lett ; 22(1): 357-62, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22130135

RESUMO

The optimization of a series of 8-aza-quinazolinone analogs for antagonist activity against the CXCR3 receptor is reported. Compounds were optimized to avoid the formation of active metabolites and time-dependent-inhibitors of CYP3A4. In addition, antagonists showed potent against CXCR3 activity in whole blood and optimized to avoid activity in the chromosomal aberration assay. Compound 25 was identified as having the optimal balance of CXCR3 activity and pharmacokinetic properties across multiple pre-clinical species, which are reported herein.


Assuntos
Quinazolinas/síntese química , Quinazolinonas/síntese química , Receptores CXCR3/antagonistas & inibidores , Animais , Bleomicina/toxicidade , Aberrações Cromossômicas , Citocromo P-450 CYP3A , Inibidores do Citocromo P-450 CYP3A , Cães , Relação Dose-Resposta a Droga , Desenho de Fármacos , Humanos , Inflamação , Concentração Inibidora 50 , Leucócitos/efeitos dos fármacos , Macaca fascicularis , Camundongos , Modelos Químicos , Quinazolinas/farmacologia , Quinazolinonas/farmacologia , Fatores de Tempo
18.
Bioanalysis ; 3(20): 2349-56, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22011182

RESUMO

BACKGROUND: The use of dried blood spot (DBS) sampling technique is of particular interest for drug discovery pharmacokinetic studies due to the small blood volume requirement. In addition, automated blood sampling is an attractive approach for rat pharmacokinetic studies as animal handling work is minimized. The goal of this study was to use an automated DBS sampler for automated blood collection and spotting onto DBS paper for pharmacokinetic studies in rats. AMG 517, a potent and selective vanilloid receptor antagonist, was dosed to rats (n = 3) intravenously and blood samples were collected at nine time points over a 24 h period using the automated DBS sampler. After drying, storage and shipment, the DBS samples were extracted and analyzed by LC-MS/MS. RESULTS: The developed bioanalytical method for the analysis of DBS samples had good accuracy and precision within the context of a discovery, non-GLP analysis. The concentration-time data and pharmacokinetic parameters generated from automated spotted samples were very similar to those derived from manually spotted DBS samples. The manual DBS data were also comparable to plasma data after correction for blood-to-plasma ratio. CONCLUSION: The automated DBS sampling is a promising technique for rodent pharmacokinetic studies and will improve the efficiency and quality of DBS sampling.


Assuntos
Benzotiazóis/farmacocinética , Cromatografia Líquida de Alta Pressão , Teste em Amostras de Sangue Seco , Farmacocinética , Pirimidinas/farmacocinética , Espectrometria de Massas em Tandem , Animais , Automação , Benzotiazóis/sangue , Masculino , Pirimidinas/sangue , Ratos , Ratos Sprague-Dawley , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo
19.
Drug Metab Dispos ; 38(5): 841-50, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20100816

RESUMO

The 2-methyl substituted indole, 2MI [2-(4-(4-(2,4-dichlorophenylsulfonamido)-2-methyl-1H-indol-5-yloxy)-3-methoxyphenyl)acetic acid] is a potent dual inhibitor of 1) chemoattractant receptor-homologous molecule expressed on T-helper type-2 cells and 2) d-prostanoid receptor. During evaluation as a potential treatment for asthma and allergic rhinitis, 2MI was identified as a mechanism-based inactivator of CYP3A4 in vitro. The inactivation was shown to be irreversible by dialysis and accompanied by an NADPH-dependent increase in 2MI covalent binding to a 55- to 60-kDa microsomal protein, consistent with irreversible binding to CYP3A4. Two glutathione (GSH) adducts, G1 and G2, were identified in vitro, and the more abundant adduct (G1) was unambiguously determined via NMR to be GSH adducted to the 3-position of the 2-methylindole moiety. The potential for a clinical drug-drug interaction arising from mechanism-based inactivation of CYP3A4 by 2MI was predicted using a steady-state model, and a 4.3- to 7.5-fold increase in the exposure of midazolam was predicted at anticipated therapeutic concentrations. To better assess the potential for in vivo drug-drug interactions, the Sprague-Dawley rat was used as an in vivo model. An excellent in vitro-in vivo correlation was observed for the reduction in enzyme steady-state concentration (E'(ss/Ess)) as well as the change in the exposure of a prototypical CYP3A substrate, indinavir (area under the curve (AUC) for indinavir/AUC). In summary, 2MI was identified as a potent mechanism-based inactivator of CYP3A and was predicted to elicit a clinically relevant drug-drug interaction in humans at an anticipated therapeutic concentration.


Assuntos
Citocromo P-450 CYP3A/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Glutationa/metabolismo , Indóis/metabolismo , Receptores Imunológicos/antagonistas & inibidores , Receptores de Prostaglandina/antagonistas & inibidores , Animais , Área Sob a Curva , Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Hidrocarboneto de Aril Hidroxilases/efeitos dos fármacos , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biocatálise/efeitos dos fármacos , Inibidores do Citocromo P-450 CYP3A , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Indinavir/metabolismo , Indinavir/farmacocinética , Indóis/farmacologia , Cinética , Espectroscopia de Ressonância Magnética , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Midazolam/metabolismo , Midazolam/farmacocinética , Modelos Biológicos , Estrutura Molecular , NADP/metabolismo , Farmacocinética , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA