Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 593(21): 2977-2989, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31449676

RESUMO

The di-copper center CuA is an essential metal cofactor in cytochrome oxidase (Cox) of mitochondria and many prokaryotes, mediating one-electron transfer from cytochrome c to the site for oxygen reduction. CuA is located in subunit II (CoxB) of Cox and protrudes into the periplasm of Gram-negative bacteria or the mitochondrial intermembrane space. How the two copper ions are brought together to build CoxB·CuA is the subject of this review. It had been known that the reductase TlpA and the metallochaperones ScoI and PcuC are required for CuA formation in bacteria, but the mechanism of copper transfer has emerged only recently for the Bradyrhizobium diazoefficiens system. It consists of the following steps: (a) TlpA keeps the active site cysteine pair of CoxB in its dithiol state as a prerequisite for metal insertion; (b) ScoI·Cu2+ rapidly forms a transient complex with apo-CoxB; (c) PcuC, loaded with Cu1+ and Cu2+ , dissociates this complex to CoxB·Cu2+ , and a second PcuC·Cu1+ ·Cu2+ transfers Cu1+ to CoxB·Cu2+ , yielding mature CoxB·CuA . Variants of this pathway might exist in other bacteria or mitochondria.


Assuntos
Bactérias/enzimologia , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Bactérias/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Transporte de Elétrons , Redes e Vias Metabólicas
2.
Sci Adv ; 5(7): eaaw8478, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31392273

RESUMO

The mechanisms underlying the biogenesis of the structurally unique, binuclear Cu1.5+•Cu1.5+ redox center (CuA) on subunit II (CoxB) of cytochrome oxidases have been a long-standing mystery. Here, we reconstituted the CoxB•CuA center in vitro from apo-CoxB and the holo-forms of the copper transfer chaperones ScoI and PcuC. A previously unknown, highly stable ScoI•Cu2+•CoxB complex was shown to be rapidly formed as the first intermediate in the pathway. Moreover, our structural data revealed that PcuC has two copper-binding sites, one each for Cu1+ and Cu2+, and that only PcuC•Cu1+•Cu2+ can release CoxB•Cu2+ from the ScoI•Cu2+•CoxB complex. The CoxB•CuA center was then formed quantitatively by transfer of Cu1+ from a second equivalent of PcuC•Cu1+•Cu2+ to CoxB•Cu2+. This metalation pathway is consistent with all available in vivo data and identifies the sources of the Cu ions required for CuA center formation and the order of their delivery to CoxB.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metalochaperonas/química , Metalochaperonas/metabolismo , Apoproteínas/metabolismo , Sítios de Ligação , Bradyrhizobium/metabolismo , Cristalografia por Raios X , Modelos Biológicos , Oxirredução , Domínios Proteicos , Relação Estrutura-Atividade
3.
Genes (Basel) ; 8(12)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244759

RESUMO

One of the many disparate lifestyles of Bradyrhizobium diazoefficiens is chemolithotrophic growth with thiosulfate as an electron donor for respiration. The employed carbon source may be CO2 (autotrophy) or an organic compound such as succinate (mixotrophy). Here, we discovered three new facets of this capacity: (i) When thiosulfate and succinate were consumed concomitantly in conditions of mixotrophy, even a high molar excess of succinate did not exert efficient catabolite repression over the use of thiosulfate. (ii) Using appropriate cytochrome mutants, we found that electrons derived from thiosulfate during chemolithoautotrophic growth are preferentially channeled via cytochrome c550 to the aa3-type heme-copper cytochrome oxidase. (iii) Three genetic regulators were identified to act at least partially in the expression control of genes for chemolithoautotrophic thiosulfate oxidation: RegR and CbbR as activators, and SoxR as a repressor.

4.
J Biol Chem ; 289(47): 32431-44, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25274631

RESUMO

Two critical cysteine residues in the copper-A site (Cu(A)) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu(2+) transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E'0 = -231 mV) as compared with that of TlpA (E'0 = -256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 10(4) M(-1) s(-1) that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the Cu(A)-CoxB complex may be bypassed in vivo by high environmental Cu(2+) concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.


Assuntos
Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Chaperonas Moleculares/metabolismo , Tiorredoxinas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Cobre/química , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/genética , Cinética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Mutação , Oxirredução , Periplasma/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Termodinâmica , Tiorredoxinas/química , Tiorredoxinas/genética
5.
Appl Environ Microbiol ; 80(7): 2094-101, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24463964

RESUMO

Rhizobia have a versatile catabolism that allows them to compete successfully with other microorganisms for nutrients in the soil and in the rhizosphere of their respective host plants. In this study, Bradyrhizobium japonicum USDA 110 was found to be able to utilize oxalate as the sole carbon source. A proteome analysis of cells grown in minimal medium containing arabinose suggested that oxalate oxidation extends the arabinose degradation branch via glycolaldehyde. A mutant of the key pathway genes oxc (for oxalyl-coenzyme A decarboxylase) and frc (for formyl-coenzyme A transferase) was constructed and shown to be (i) impaired in growth on arabinose and (ii) unable to grow on oxalate. Oxalate was detected in roots and, at elevated levels, in root nodules of four different B. japonicum host plants. Mixed-inoculation experiments with wild-type and oxc-frc mutant cells revealed that oxalotrophy might be a beneficial trait of B. japonicum at some stage during legume root nodule colonization.


Assuntos
Arabinose/metabolismo , Bradyrhizobium/metabolismo , Carbono/metabolismo , Oxalatos/metabolismo , Proteínas de Bactérias/análise , Bradyrhizobium/química , Bradyrhizobium/crescimento & desenvolvimento , Meios de Cultura/química , Genes Bacterianos , Redes e Vias Metabólicas/genética , Mutação , Raízes de Plantas/química , Raízes de Plantas/microbiologia , Plantas/química , Plantas/microbiologia , Proteoma/análise
6.
J Biol Chem ; 288(20): 14238-14246, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23546876

RESUMO

FixK2 is a regulatory protein that activates a large number of genes for the anoxic and microoxic, endosymbiotic, and nitrogen-fixing life styles of the α-proteobacterium Bradyrhizobium japonicum. FixK2 belongs to the cAMP receptor protein (CRP) superfamily. Although most CRP family members are coregulated by effector molecules, the activity of FixK2 is negatively controlled by oxidation of its single cysteine (Cys-183) located next to the DNA-binding domain and possibly also by proteolysis. Here, we report the three-dimensional x-ray structure of FixK2, a representative of the FixK subgroup of the CRP superfamily. Crystallization succeeded only when (i) an oxidation- and protease-insensitive protein variant (FixK2(C183S)-His6) was used in which Cys-183 was replaced with serine and the C terminus was fused with a hexahistidine tag and (ii) this protein was allowed to form a complex with a 30-mer double-stranded target DNA. The structure of the FixK2-DNA complex was solved at a resolution of 1.77 Å, at which the protein formed a homodimer. The precise protein-DNA contacts were identified, which led to an affirmation of the canonical target sequence, the so-called FixK2 box. The C terminus is surface-exposed, which might explain its sensitivity to specific cleavage and degradation. The oxidation-sensitive Cys-183 is also surface-exposed and in close proximity to DNA. Therefore, we propose a mechanism whereby the oxo acids generated after oxidation of the cysteine thiol cause an electrostatic repulsion, thus preventing specific DNA binding.


Assuntos
Proteínas de Bactérias/química , Bradyrhizobium/química , DNA Bacteriano/química , Regulação Bacteriana da Expressão Gênica , Oxigênio/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Nitrogênio/química , Fixação de Nitrogênio , Plasmídeos , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio
8.
FEBS Lett ; 587(1): 88-93, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23187170

RESUMO

FixK2 is a CRP-like transcription factor that controls the endosymbiotic lifestyle of Bradyrhizobium japonicum. The reason for its noticeable protease sensitivity was explored here. The repertoire of Clp chaperone-proteases in B. japonicum was examined, and specifically ClpAP1 and ClpXP1 were purified and tested. FixK2 was found to be degraded by ClpAP1 but not by ClpXP1. Degradation was inhibited by the ClpS1 adaptor protein, indicating that FixK2 is a direct substrate for ClpAP1. The last 12 amino acids of FixK2 appeared to be recognized by ClpA. The results suggest that the ClpAP system is involved in the cellular turnover of FixK2.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Endopeptidase Clp/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Sítios de Ligação , Bradyrhizobium/enzimologia , Bradyrhizobium/genética , Endopeptidase Clp/genética , Endopeptidase Clp/isolamento & purificação , Genes Bacterianos , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/metabolismo , Cinética , Chaperonas Moleculares/genética , Chaperonas Moleculares/isolamento & purificação , Filogenia , Domínios e Motivos de Interação entre Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
9.
FEBS Lett ; 586(23): 4094-9, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-23123159

RESUMO

TlpA and ScoI of Bradyrhizobium japonicum are membrane-anchored thioredoxin-like proteins oriented towards the periplasm. TlpA is a protein-disulfide reductase. ScoI is a copper chaperone for cytochrome oxidase biogenesis. TlpA with its negative redox potential (E(o') -256 mV) was shown here to reduce oxidized ScoI, for which we determined a less negative E(o') (-160 mV). The fast forward reaction (rate constant 9.4×10(4) M(-1) s(-1)) was typical for physiologically relevant disulfide exchange reactions. A transient TlpA-ScoI heterodisulfide formed between Cys107 of TlpA's active site (C(107)XXC(110)) and Cys78 of ScoI's copper-binding site (C(74)XXXC(78)). We conclude that TlpA recycles ScoI to the dithiol form prior to metallation.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Metalochaperonas/metabolismo , Substâncias Redutoras/metabolismo , Tiorredoxinas/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Cinética , Oxirredução , Periplasma/metabolismo
10.
J Biol Chem ; 287(46): 38812-23, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23012364

RESUMO

Microarray analysis of Bradyrhizobium japonicum grown under copper limitation uncovered five genes named pcuABCDE, which are co-transcribed and co-regulated as an operon. The predicted gene products are periplasmic proteins (PcuA, PcuC, and PcuD), a TonB-dependent outer membrane receptor (PcuB), and a cytoplasmic membrane-integral protein (PcuE). Homologs of PcuC and PcuE had been discovered in other bacteria, namely PCu(A)C and YcnJ, where they play a role in cytochrome oxidase biogenesis and copper transport, respectively. Deletion of the pcuABCDE operon led to a pleiotropic phenotype, including defects in the aa(3)-type cytochrome oxidase, symbiotic nitrogen fixation, and anoxic nitrate respiration. Complementation analyses revealed that, under our assay conditions, the tested functions depended only on the pcuC gene and not on pcuA, pcuB, pcuD, or pcuE. The B. japonicum genome harbors a second pcuC-like gene (blr7088), which, however, did not functionally replace the mutated pcuC. The PcuC protein was overexpressed in Escherichia coli, purified to homogeneity, and shown to bind Cu(I) with high affinity in a 1:1 stoichiometry. The replacement of His(79), Met(90), His(113), and Met(115) by alanine perturbed copper binding. This corroborates the previously purported role of this protein as a periplasmic copper chaperone for the formation of the Cu(A) center on the aa(3)-type cytochrome oxidase. In addition, we provide evidence that PcuC and the copper chaperone ScoI are important for the symbiotically essential, Cu(A)-free cbb(3)-type cytochrome oxidase specifically in endosymbiotic bacteroids of soybean root nodules, which could explain the symbiosis-defective phenotype of the pcuC and scoI mutants.


Assuntos
Bradyrhizobium/enzimologia , Proteínas de Transporte/metabolismo , Cobre/química , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Cobre/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Mutação , Nitrogênio/química , Fixação de Nitrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Periplasma/metabolismo , Fenótipo , Homologia de Sequência de Aminoácidos
11.
PLoS One ; 7(8): e43421, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22916258

RESUMO

Extracytoplasmic function (ECF) σ factors control the transcription of genes involved in different cellular functions, such as stress responses, metal homeostasis, virulence-related traits, and cell envelope structure. The genome of Bradyrhizobium japonicum, the nitrogen-fixing soybean endosymbiont, encodes 17 putative ECF σ factors belonging to nine different ECF σ factor families. The genes for two of them, ecfQ (bll1028) and ecfF (blr3038), are highly induced in response to the reactive oxygen species hydrogen peroxide (H(2)O(2)) and singlet oxygen ((1)O(2)). The ecfF gene is followed by the predicted anti-σ factor gene osrA (blr3039). Mutants lacking EcfQ, EcfF plus OsrA, OsrA alone, or both σ factors plus OsrA were phenotypically characterized. While the symbiotic properties of all mutants were indistinguishable from the wild type, they showed increased sensitivity to singlet oxygen under free-living conditions. Possible target genes of EcfQ and EcfF were determined by microarray analyses, and candidate genes were compared with the H(2)O(2)-responsive regulon. These experiments disclosed that the two σ factors control rather small and, for the most part, distinct sets of genes, with about half of the genes representing 13% of the members of H(2)O(2)-responsive regulon. To get more insight into transcriptional regulation of both σ factors, the 5' ends of ecfQ and ecfF mRNA were determined. The presence of conserved sequence motifs in the promoter region of ecfQ and genes encoding EcfQ-like σ factors in related α-proteobacteria suggests regulation via a yet unknown transcription factor. By contrast, we have evidence that ecfF is autoregulated by transcription from an EcfF-dependent consensus promoter, and its product is negatively regulated via protein-protein interaction with OsrA. Conserved cysteine residues 129 and 179 of OsrA are required for normal function of OsrA. Cysteine 179 is essential for release of EcfF from an EcfF-OsrA complex upon H(2)O(2) stress while cysteine 129 is possibly needed for EcfF-OsrA interaction.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator sigma/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano/genética , Ligação Proteica
12.
Bioelectromagnetics ; 33(6): 488-96, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22331529

RESUMO

The widespread use of electricity raises the question of whether or not 50 Hz (power line frequency in Europe) magnetic fields (MFs) affect organisms. We investigated the transcription of Escherichia coli K-12 MG1655 in response to extremely low-frequency (ELF) MFs. Fields generated by three signal types (sinusoidal continuous, sinusoidal intermittent, and power line intermittent; all at 50 Hz, 1 mT) were applied and gene expression was monitored at the transcript level using an Affymetrix whole-genome microarray. Bacterial cells were grown continuously in a chemostat (dilution rate D = 0.4 h(-1)) fed with glucose-limited minimal medium and exposed to 50 Hz MFs with a homogenous flux density of 1 mT. For all three types of MFs investigated, neither bacterial growth (determined using optical density) nor culturable counts were affected. Likewise, no statistically significant change (fold-change > 2, P ≤ 0.01) in the expression of 4,358 genes and 714 intergenic regions represented on the gene chip was detected after MF exposure for 2.5 h (1.4 generations) or 15 h (8.7 generations). Moreover, short-term exposure (8 min) to the sinusoidal continuous and power line intermittent signal neither affected bacterial growth nor showed evidence for reliable changes in transcription. In conclusion, our experiments did not indicate that the different tested MFs (50 Hz, 1 mT) affected the transcription of E. coli.


Assuntos
Campos Eletromagnéticos , Escherichia coli K12/genética , Escherichia coli K12/efeitos da radiação , Perfilação da Expressão Gênica , Genoma Bacteriano/genética , Transcrição Gênica/efeitos da radiação , Campos Eletromagnéticos/efeitos adversos
13.
Proc Natl Acad Sci U S A ; 108(40): 16765-70, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21949379

RESUMO

Many species of Proteobacteria communicate by using LuxI-LuxR-type quorum-sensing systems that produce and detect acyl-homoserine lactone (acyl-HSL) signals. Most of the known signals are straight-chain fatty acyl-HSLs, and evidence indicates that LuxI homologs prefer fatty acid-acyl carrier protein (ACP) over fatty acyl-CoA as the acyl substrate for signal synthesis. Two related LuxI homologs, RpaI and BtaI from Rhodopseudomonas palustris and photosynthetic stem-nodulating bradyrhizobia, direct production of the aryl-HSLs p-coumaroyl-HSL and cinnamoyl-HSL, respectively. Here we report that BjaI from the soybean symbiont Bradyrhizobium japonicum USDA110 is closely related to RpaI and BtaI and catalyzes the synthesis of isovaleryl-HSL (IV-HSL), a branched-chain fatty acyl-HSL. We show that IV-HSL induces expression of bjaI, and in this way IV-HSL functions like many other acyl-HSL quorum-sensing signals. Purified histidine-tagged BjaI was an IV-HSL synthase, which was active with isovaleryl-CoA but not detectably so with isovaleryl-ACP. This suggests that the RpaI-BtaI-BjaI subfamily of acyl-HSL synthases may use CoA- rather than ACP-linked substrates for acyl-HSL synthesis. The bjaI-linked bjaR(1) gene is involved in the response to IV-HSL, and BjaR(1) is sensitive to IV-HSL at concentrations as low as 10 pM. Low but sufficient levels of IV-HSL (about 5 nM) accumulate in B. japonicum culture fluid. The low levels of IV-HSL synthesis have likely contributed to the fact that the quorum-sensing signal from this bacterium has not been described elsewhere.


Assuntos
4-Butirolactona/análogos & derivados , Bradyrhizobium/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Glycine max/microbiologia , Percepção de Quorum/fisiologia , 4-Butirolactona/metabolismo , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bradyrhizobium/fisiologia , Análise por Conglomerados , Biologia Computacional , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
FEMS Microbiol Lett ; 312(2): 184-91, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20883496

RESUMO

Multidrug efflux systems not only cause resistance against antibiotics and toxic compounds but also mediate successful host colonization by certain plant-associated bacteria. The genome of the nitrogen-fixing soybean symbiont Bradyrhizobium japonicum encodes 24 members of the family of resistance/nodulation/cell division (RND) multidrug efflux systems, of which BdeAB is genetically controlled by the RegSR two-component regulatory system. Phylogenetic analysis of the membrane components of these 24 RND-type transporters revealed that BdeB is more closely related to functionally characterized orthologs in other bacteria, including those associated with plants, than to any of the other 23 paralogs in B. japonicum. A mutant with a deletion of the bdeAB genes was more susceptible to inhibition by the aminoglycosides kanamycin and gentamicin than the wild type, and had a strongly decreased symbiotic nitrogen-fixation activity on soybean, but not on the alternative host plants mungbean and cowpea, and only very marginally on siratro. The host-specific role of a multidrug efflux pump is a novel feature in the rhizobia-legume symbioses. Consistent with the RegSR dependency of bdeAB, a B. japonicum regR mutant was found to have a greater sensitivity against the two tested antibiotics and a symbiotic defect that is most pronounced for soybean.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Farmacorresistência Bacteriana Múltipla , Glycine max/microbiologia , Fixação de Nitrogênio , Simbiose , Proteínas de Bactérias/genética , Sequência de Bases , Bradyrhizobium/efeitos dos fármacos , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Genes MDR , Gentamicinas/farmacologia , Canamicina/farmacologia , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase , Deleção de Sequência
15.
Mol Genet Genomics ; 284(1): 25-32, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20524010

RESUMO

Several essential Bradyrhizobium japonicum genes for a symbiotic, nitrogen-fixing root-nodule symbiosis are positively controlled under micro-oxic conditions by the FixLJ-FixK(2) regulatory cascade. Negative control is exerted by reactive oxygen species at the level of the FixK(2) protein. Furthermore, we noticed that fixK (2) gene expression is increased in a fixK (2) mutant, suggesting that FixK(2) in the wild type has a negative effect, directly or indirectly, on its own expression. To possibly understand this effect, the transcription pattern of the fixLJ-bll2758-fixK (2) gene region was examined more closely. While fixK (2) gene transcription is activated by FixJ, the bll2758 gene is transcribed from its own promoter in a FixK(2)-dependent manner, and there is no read-through transcription from bll2758 into fixK (2). The bll2758-encoded protein is predicted to be a stand-alone receiver domain of a response regulator, making it a prime candidate for exerting an inhibitory role on the expression of fixK (2). Transcriptome profiling of a bll2758 knock-out mutant revealed, however, that neither fixK (2) itself nor any of the known FixJ- and FixK(2)-dependent target genes is significantly affected in their expression. This precludes a role of the bll2758 product as a so-called FixT-like protein in the inhibition of FixLJ function, as was proposed for Sinorhizobium meliloti and Caulobacter crescentus. Instead, we rationalize that other transcription factors, whose genes are activated by FixK(2), might be involved in the negative autoregulation of fixK (2) gene expression.


Assuntos
Proteínas de Bactérias/genética , Bradyrhizobium/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Homeostase/genética , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cromossomos Bacterianos/genética , Loci Gênicos/genética , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Fatores de Transcrição/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica
16.
Mol Plant Microbe Interact ; 23(6): 784-90, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20459317

RESUMO

Rhizobia are able to infect legume roots, elicit root nodules, and live therein as endosymbiotic, nitrogen-fixing bacteroids. Host recognition and specificity are the results of early programming events in bacteria and plants, in which important signal molecules play key roles. Here, we introduce a new aspect of this symbiosis: the adaptive response to hosts. This refers to late events in bacteroids in which specific genes are transcribed and translated that help the endosymbionts to meet the disparate environmental requirements imposed by the hosts in which they live. The host-adaptation concept was elaborated with Bradyrhizobium japonicum and three different legumes (soybean, cowpea, and siratro). Transcriptomes and proteomes in root-nodule bacteroids were analyzed and compared, and genes and proteins were identified which are specifically induced in only one of the three hosts. We focused on those determinants that were congruent in the two data sets of host-specific transcripts and proteins: seven for soybean, five for siratro, and two for cowpea. One gene cluster for a predicted ABC-type transporter, differentially expressed in siratro, was deleted in B. japonicum. The respective mutant had a symbiotic defect on siratro rather than on soybean or cowpea. This result demonstrates the value of the applied approach and corroborates the host-specific adaptation concept.


Assuntos
Adaptação Fisiológica/fisiologia , Proteínas de Bactérias/metabolismo , Bradyrhizobium/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/fisiologia , Adaptação Fisiológica/genética , Proteínas de Bactérias/genética , Fabaceae/microbiologia , Nodulação/fisiologia , Especificidade da Espécie
17.
J Biol Chem ; 285(21): 15704-13, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20335176

RESUMO

This work addresses the biogenesis of heme-copper terminal oxidases in Bradyrhizobium japonicum, the nitrogen-fixing root nodule symbiont of soybean. B. japonicum has four quinol oxidases and four cytochrome oxidases. The latter include the aa(3)- and cbb(3)-type oxidases. Although both have a Cu(B) center in subunit I, the subunit II proteins differ in having either a Cu(A) center (in aa(3)) or a covalently bound heme c (in cbb(3)). Two biogenesis factors were genetically studied here, the periplasmically exposed CoxG and ScoI proteins, which are the respective homologs of the mitochondrial copper-trafficking chaperones Cox11 and Sco1 for the formation of the Cu(B) center in subunit I and the Cu(A) center in subunit II of cytochrome aa(3). We could demonstrate copper binding to ScoI in vitro, a process for which the thiols of cysteine residues 74 and 78 in the ScoI polypeptide were shown to be essential. Knock-out mutations in the B. japonicum coxG and scoI genes led to loss of cytochrome aa(3) assembly and activity in the cytoplasmic membrane, whereas the cbb(3)-type cytochrome oxidase apparently remained unaffected. This suggests that subunit I of the cbb(3)-type oxidase obtains its copper cofactor via a different pathway than cytochrome aa(3). In contrast to the coxG mutation, the scoI mutation caused a decreased symbiotic nitrogen fixation activity. We hypothesize that a periplasmic B. japonicum protein other than any of the identified Cu(A) proteins depends on ScoI and is required for an effective symbiosis.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/enzimologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fixação de Nitrogênio/fisiologia , Proteínas de Bactérias/genética , Bradyrhizobium/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Técnicas de Silenciamento de Genes , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação
18.
Proteomics ; 10(7): 1391-400, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20104621

RESUMO

Bradyrhizobium japonicum, a gram-negative soil bacterium that establishes an N(2)-fixing symbiosis with its legume host soybean (Glycine max), has been used as a symbiosis model system. Using a sensitive geLC-MS/MS proteomics approach, we report the identification of 2315 B. japonicum strain USDA110 proteins (27.8% of the theoretical proteome) that are expressed 21 days post infection in symbiosis with soybean cultivated in growth chambers, substantially expanding the previously known symbiosis proteome. Integration of transcriptomics data generated under the same conditions (2780 expressed genes) allowed us to compile a comprehensive expression profile of B. japonicum during soybean symbiosis, which comprises 3587 genes/proteins (43% of the predicted B. japonicum genes/proteins). Analysis of this data set revealed both the biases and the complementarity of these global profiling technologies. A functional classification and pathway analysis showed that most of the proteins involved in carbon and nitrogen metabolism are expressed, including a complete set of tricarboxylic acid cycle enzymes, several gluconeogenesis and pentose phosphate pathway enzymes, as well as several proteins that were previously not considered to be present during symbiosis. Congruent results were obtained for B. japonicum bacteroids harvested from soybeans grown under field conditions.


Assuntos
Bradyrhizobium/metabolismo , Perfilação da Expressão Gênica/métodos , Glycine max/microbiologia , Proteômica/métodos , Proteínas de Bactérias/metabolismo , Bradyrhizobium/genética , Carbono/metabolismo , Cromatografia Líquida , Bases de Dados de Proteínas , Ponto Isoelétrico , Redes e Vias Metabólicas , Peso Molecular , Nitrogênio/metabolismo , Fixação de Nitrogênio , Ácidos Nucleicos/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Simbiose , Espectrometria de Massas em Tandem
19.
Proc Natl Acad Sci U S A ; 106(51): 21860-5, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19955406

RESUMO

Rhizobial FixK-like proteins play essential roles in activating genes for endosymbiotic life in legume root nodules, such as genes for micro-oxic respiration. In the facultative soybean symbiont, Bradyrhizobium japonicum, the FixK(2) protein is the key player in a complex regulatory network. The fixK(2) gene itself is activated by the 2-component regulatory system FixLJ in response to a moderate decrease of the oxygen tension, and the FixK(2) protein distributes and amplifies this response to the level of approximately 200 target genes. Unlike other members of the cAMP receptor protein family, to which FixK(2) belongs, the FixK(2) protein does not appear to be modulated by small effector molecules. Here, we show that a critical, single cysteine residue (C183) near the DNA-binding domain of FixK(2) confers sensitivity to oxidizing agents and reactive oxygen species. Oxidation-dependent inactivation occurs not only in vitro, as shown with cell-free transcription assays, but also in vivo, as shown by microarray-assisted transcriptome analysis of the FixK(2) regulon. The oxidation mechanism may involve a reversible dimerization by intermolecular disulfide-bridge formation and a direct, irreversible oxidation at the cysteine thiol, depending on the oxidizing agent. Mutational exchange of C183 to alanine renders FixK(2) resistant to oxidation, yet allows full activity, shown again both in vitro and in vivo. We hypothesize that posttranslational modification by reactive oxygen species is a means to counterbalance the cellular pool of active FixK(2), which would otherwise fill unrestrictedly through FixLJ-dependent synthesis.


Assuntos
Bradyrhizobium/fisiologia , Glycine max/microbiologia , Processamento de Proteína Pós-Traducional , Simbiose , Fatores de Transcrição/metabolismo , Cisteína/metabolismo , Dimerização , Peróxido de Hidrogênio/farmacologia , Oxirredução
20.
J Bacteriol ; 190(20): 6568-79, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18689489

RESUMO

Symbiotic N(2) fixation in Bradyrhizobium japonicum is controlled by a complex transcription factor network. Part of it is a hierarchically arranged cascade in which the two-component regulatory system FixLJ, in response to a moderate decrease in oxygen concentration, activates the fixK(2) gene. The FixK(2) protein then activates not only a number of genes essential for microoxic respiration in symbiosis (fixNOQP and fixGHIS) but also further regulatory genes (rpoN(1), nnrR, and fixK(1)). The results of transcriptome analyses described here have led to a comprehensive and expanded definition of the FixJ, FixK(2), and FixK(1) regulons, which, respectively, consist of 26, 204, and 29 genes specifically regulated in microoxically grown cells. Most of these genes are subject to positive control. Particular attention was addressed to the FixK(2)-dependent genes, which included a bioinformatics search for putative FixK(2) binding sites on DNA (FixK(2) boxes). Using an in vitro transcription assay with RNA polymerase holoenzyme and purified FixK(2) as the activator, we validated as direct targets eight new genes. Interestingly, the adjacent but divergently oriented fixK(1) and cycS genes shared the same FixK(2) box for the activation of transcription in both directions. This recognition site may also be a direct target for the FixK(1) protein, because activation of the cycS promoter required an intact fixK(1) gene and either microoxic or anoxic, denitrifying conditions. We present evidence that cycS codes for a c-type cytochrome which is important, but not essential, for nitrate respiration. Two other, unexpected results emerged from this study: (i) specifically FixK(1) seemed to exert a negative control on genes that are normally activated by the N(2) fixation-specific transcription factor NifA, and (ii) a larger number of genes are expressed in a FixK(2)-dependent manner in endosymbiotic bacteroids than in culture-grown cells, pointing to a possible symbiosis-specific control.


Assuntos
Proteínas de Bactérias/metabolismo , Bradyrhizobium/fisiologia , Regulação Bacteriana da Expressão Gênica , Hemeproteínas/metabolismo , Regulon , Proteínas de Bactérias/genética , Sítios de Ligação , Bradyrhizobium/genética , DNA Bacteriano/genética , Perfilação da Expressão Gênica , Hemeproteínas/genética , Histidina Quinase , Modelos Biológicos , Fixação de Nitrogênio , Regiões Promotoras Genéticas , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...