Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
R Soc Open Sci ; 9(3): 211519, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35308626

RESUMO

A high-quality, low-cost ventilator, dubbed HEV, has been developed by the particle physics community working together with biomedical engineers and physicians around the world. The HEV design is suitable for use both in and out of hospital intensive care units, provides a variety of modes and is capable of supporting spontaneous breathing and supplying oxygen-enriched air. An external air supply can be combined with the unit for use in situations where compressed air is not readily available. HEV supports remote training and post market surveillance via a Web interface and data logging to complement standard touch screen operation, making it suitable for a wide range of geographical deployment. The HEV design places emphasis on the ventilation performance, especially the quality and accuracy of the pressure curves, reactivity of the trigger, measurement of delivered volume and control of oxygen mixing, delivering a global performance which will be applicable to ventilator needs beyond the COVID-19 pandemic. This article describes the conceptual design and presents the prototype units together with a performance evaluation.

2.
Sensors (Basel) ; 21(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34577286

RESUMO

The optimization of the Beetle readout ASIC and the performance of the software for the signal processing based on machine learning methods are presented. The Beetle readout chip was developed for the LHCb (Large Hadron Collider beauty) tracking detectors and was used in the VELO (Vertex Locator) during Run 1 and 2 of LHC data taking. The VELO, surrounding the LHC beam crossing region, was a leading part of the LHCb tracking system. The Beetle chip was used to read out the signal from silicon microstrips, integrating and amplifying it. The studies presented in this paper cover the optimization of its electronic configuration to achieve the lower power consumption footprint and the lower operational temperature of the sensors, while maintaining a good condition of the analogue response of the whole chip. The studies have shown that optimizing the operational temperature is possible and can be beneficial when the detector is highly irradiated. Even a single degree drop in silicon temperature can result in a significant reduction in the leakage current. Similar studies are being performed for the future silicon tracker, the Upstream Tracker (UT), which will start operating at LHC in 2021. It is expected that the inner part of the UT detector will suffer radiation damage similar to the most irradiated VELO sensors in Run 2. In the course of analysis we also developed a general approach for the pulse shape reconstruction using an ANN approach. This technique can be reused in case of any type of front-end readout chip.


Assuntos
Besouros , Animais , Simulação por Computador , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador , Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...