Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 25(7): 104683, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35856019

RESUMO

Coordinating growth and patterning is essential for eukaryote morphogenesis. In plants, auxin is a key regulator of morphogenesis implicated throughout development. Despite this central role, our understanding of how auxin coordinates cell fate and growth changes is still limited. Here, we addressed this question using a combination of genomic screens to delve into the transcriptional network induced by auxin at the earliest stage of flower development, prior to morphological changes. We identify a shoot-specific network suggesting that auxin initiates growth through an antagonistic regulation of growth-promoting and growth-repressive hormones, quasi-synchronously to floral fate specification. We further identify two DNA-binding One Zinc Finger (DOF) transcription factors acting in an auxin-dependent network that could interface growth and cell fate from the early stages of flower development onward.

2.
Front Plant Sci ; 11: 224, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194601

RESUMO

Most sorghum biomass accumulates in stem secondary cell walls (SCW). As sorghum stems are used as raw materials for various purposes such as feed, energy and fiber reinforced polymers, identifying the genes responsible for SCW establishment is highly important. Taking advantage of studies performed in model species, most of the structural genes contributing at the molecular level to the SCW biosynthesis in sorghum have been proposed while their regulatory factors have mostly not been determined. Validation of the role of several MYB and NAC transcription factors in SCW regulation in Arabidopsis and a few other species has been provided. In this study, we contributed to the recent efforts made in grasses to uncover the mechanisms underlying SCW establishment. We reported updated phylogenies of NAC and MYB in 9 different species and exploited findings from other species to highlight candidate regulators of SCW in sorghum. We acquired expression data during sorghum internode development and used co-expression analyses to determine groups of co-expressed genes that are likely to be involved in SCW establishment. We were able to identify two groups of co-expressed genes presenting multiple evidences of involvement in SCW building. Gene enrichment analysis of MYB and NAC genes provided evidence that while NAC SECONDARY WALL THICKENING PROMOTING FACTOR NST genes and SECONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN gene functions appear to be conserved in sorghum, NAC master regulators of SCW in sorghum may not be as tissue compartmentalized as in Arabidopsis. We showed that for every homolog of the key SCW MYB in Arabidopsis, a similar role is expected for sorghum. In addition, we unveiled sorghum MYB and NAC that have not been identified to date as being involved in cell wall regulation. Although specific validation of the MYB and NAC genes uncovered in this study is needed, we provide a network of sorghum genes involved in SCW both at the structural and regulatory levels.

3.
Front Plant Sci ; 7: 81, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904053

RESUMO

We report the redox status (profiles) for specific populations of cells that comprise the Arabidopsis root tip. For recently germinated, 3-5-day-old seedlings we show that the region of the root tip with the most reduced redox status includes the root cap initials, the quiescent center and the most distal portion of the proximal meristem, and coincides with (overlays) the region of the auxin maximum. As one moves basally, further into the proximal meristem, and depending on the growth conditions, the redox status becomes more oxidized, with a 5-10 mV difference in redox potential between the two borders delimiting the proximal meristem. At the point on the root axis at which cells of the proximal meristem cease division and enter the transition zone, the redox potential levels off, and remains more or less unchanged throughout the transition zone. As cells leave the transition zone and enter the zone of elongation the redox potentials become more oxidized. Treating roots with salt (50, 100, and 150 mM NaCl) results in marked changes in root meristem structure and development, and is preceded by changes in the redox profile, which flattens, and initially becomes more oxidized, with pronounced changes in the redox potentials of the root cap, the root cap initials and the quiescent center. Roots exposed to relatively mild levels of salt (<100 mM) are able to re-establish a normal, pre-salt treatment redox profile 3-6 days after exposure to salt. Coincident with the salt-associated changes in redox profiles are changes in the distribution of auxin transporters (AUX1, PIN1/2), which become more diffuse in their localization. We conclude that salt stress affects root meristem maintenance, in part, through changes in redox and auxin transport.

4.
Am J Bot ; 103(3): 522-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26451034

RESUMO

PREMISE OF THE STUDY: Competition among pollen grains from a single donor is expected to increase the quality of the offspring produced because of the recessive deleterious alleles expressed during pollen-tube growth. However, evidence for such an effect is inconclusive; a large number of studies suffer from confounding variation in pollen competition with variation in pollen load. METHODS: In this study, we tested the effect of pollen competition on offspring performance independently of pollen-load variation. We compared seed mass and early seedling performance in Dalechampia scandens (Euphorbiaceae) between crosses in which variation in pollen competition was achieved, without variation in pollen load, by manipulating the dispersion of pollen grains on the stigmas. KEY RESULTS: Despite a large sample size (211 crosses on 20 maternal plants), we failed to find an effect of pollen competition on seed characteristics or early seedling performance. Paternal effects were always limited, and pollen competition never reduced the within-father (residual) variance. CONCLUSION: These results suggest that limited within-donor variation in genetic quality of pollen grains reduces the potential benefits of pollen competition in the study population. The lack of paternal effects on early sporophyte performance further suggests that benefits of pollen competition among pollen from multiple donors should be limited as well, and it raises questions about the significance of pollen competition as a mechanism of sexual selection.


Assuntos
Euphorbiaceae/fisiologia , Pólen/fisiologia , Evolução Biológica , Cotilédone/fisiologia , Germinação , Modelos Biológicos , Tamanho do Órgão , Sementes/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...