Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiology ; 303(1): 130-138, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34904876

RESUMO

Background The first clinical CT system to use photon-counting detector (PCD) technology has become available for patient care. Purpose To assess the technical performance of the PCD CT system with use of phantoms and representative participant examinations. Materials and Methods Institutional review board approval and written informed consent from four participants were obtained. Technical performance of a dual-source PCD CT system was measured for standard and high-spatial-resolution (HR) collimations. Noise power spectrum, modulation transfer function, section sensitivity profile, iodine CT number accuracy in virtual monoenergetic images (VMIs), and iodine concentration accuracy were measured. Four participants were enrolled (between May 2021 and August 2021) in this prospective study and scanned using similar or lower radiation doses as their respective clinical examinations performed on the same day using energy-integrating detector (EID) CT. Image quality and findings from the participants' PCD CT and EID CT examinations were compared. Results All standard technical performance measures met accreditation and regulatory requirements. Relative to filtered back-projection reconstructions, images from iterative reconstruction had lower noise magnitude but preserved noise power spectrum shape and peak frequency. Maximum in-plane spatial resolutions of 125 and 208 µm were measured for HR and standard PCD CT scans, respectively. Minimum values for section sensitivity profile full width at half maximum measurements were 0.34 mm (0.2-mm nominal section thickness) and 0.64 mm (0.4-mm nominal section thickness) for HR and standard PCD CT scans, respectively. In a 120-kV standard PCD CT scan of a 40-cm phantom, VMI iodine CT numbers had a mean percentage error of 5.7%, and iodine concentration had root mean squared error of 0.5 mg/cm3, similar to previously reported values for EID CT. VMIs, iodine maps, and virtual noncontrast images were created for a coronary CT angiogram acquired with 66-msec temporal resolution. Participant PCD CT images showed up to 47% lower noise and/or improved spatial resolution compared with EID CT. Conclusion Technical performance of clinical photon-counting detector (PCD) CT is improved relative to that of a current state-of-the-art CT system. The dual-source PCD geometry facilitated 66-msec temporal resolution multienergy cardiac imaging. Study participant images illustrated the effect of the improved technical performance. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Willemink and Grist in this issue.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Imagens de Fantasmas , Fótons , Estudos Prospectivos , Tomografia Computadorizada por Raios X/métodos
2.
Phys Med Biol ; 66(20)2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34271558

RESUMO

We report a comprehensive evaluation of a full field-of-view (FOV) photon-counting detector (PCD) computed tomography (CT) system using phantoms, and qualitatively assess image quality in patient examples. A whole-body PCD-CT system with 50 cm FOV, 5.76 cm z-detector coverage and two acquisition modes (standard: 144 × 0.4 mm collimation and ultra-high resolution (UHR): 120 × 0.2 mm collimation) was used in this study. Phantoms were scanned to assess image uniformity, CT number accuracy, noise power spectrum, spatial resolution, material decomposition and virtual monoenergetic imaging (VMI) performance. Four patients were scanned on the PCD-CT system with matched or lower radiation dose than their prior clinical CT scans performed using energy-integrating detector (EID) CT, and the potential clinical impact of PCD-CT was qualitatively evaluated. Phantom results showed water CT numbers within ±5 HU, and image uniformity measured between peripheral and central regions-of-interests to be within ±5 HU. For the UHR mode using a dedicated sharp kernel, the cut-off spatial frequency was 40 line-pairs cm-1, which corresponds to a 125µm limiting in-plane spatial resolution. The full-width-at-half-maximum for the section sensitivity profile was 0.33 mm for the smallest slice thickness (0.2 mm) using the UHR mode. Material decomposition in a multi-energy CT phantom showed accurate material classification, with a root-mean-squared-error of 0.3 mg cc-1for iodine concentrations (2-15 mg cc-1) and 14.2 mg cc-1for hydroxyapatite concentrations (200 and 400 mg cc-1). The average percent error for CT numbers corresponding to the iodine concentrations in VMI (40-70 keV) was 2.75%. Patient PCD-CT images demonstrated better delineation of anatomy for chest and temporal bone exams performed with the UHR mode, which allowed the use of very sharp kernels not possible with EID-CT. VMI and virtual non-contrast images generated from a patient head CT angiography exam using the standard acquisition mode demonstrated the multi-energy capability of the PCD-CT system.


Assuntos
Iodo , Fótons , Humanos , Avaliação de Resultados da Assistência ao Paciente , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/métodos
3.
Eur J Radiol ; 137: 109614, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33657475

RESUMO

OBJECTIVES: to assess the feasibility of CT with an integrated photon-counting-detector system (PC-CT) in the body imaging of clinical patients. METHODS: 120 examinations using photon counting detector CT were evaluated in six groups: 1/ a standard-dose lung, 2/ low-dose lung, 3/ ultra-high resolution (UHR) lung, 4/ standard-dose abdominal, 5/ lower-dose abdominal, 6/ UHR abdominal CTA. All CT examinations were performed on a single-source prototype device equipped with a photon counting detector covering a 50 cm scan field of view. Standard dose examinations were performed with the use of detector element size of 0.4 mm, ultra-high-resolution examinations with the detector element size of 0.2 mm, respectively. The stability of the system during imaging was tested. The diagnostic quality of the acquired images was assessed based on the imaging of key structures and the noise level in five-point scale, the effective dose equivalent, dose length product and noise level, and also relation to body mass index and body surface area were compared with three similar groups of CT images made with energy integrating high end scanner. The parameters were evaluated using Wilcoxon test for independent samples, the independence was tested using Kruskal-Wallis test. RESULTS: When PC-CT images radiation dose is compared with the similar imaging using energy integrating CT, the PC-CT shows lower dose in ultra-high resolution mode, the dose is significantly lower (p < 0.0001), the standard dose examinations were performed with the comparable radiation doses. PC-CT exhibited the significantly higher ratio between parenchyma signal and background noise both in lung and in abdominal imaging (p < 0.0001). CONCLUSIONS: PC-CT showed imaging stability and excellent diagnostic quality at dose values that are comparable or better to the quality of energy integrating CT, the better signal and improved resolution is most important advantage of photon counting detector CT over energy integrating detector CT.


Assuntos
Fótons , Tomografia Computadorizada por Raios X , Humanos , Pulmão , Imagens de Fantasmas
4.
Artigo em Inglês | MEDLINE | ID: mdl-35400786

RESUMO

Computed tomography (CT) using photon-counting detectors (PCD) offers dose-efficient ultra-high-resolution imaging, high iodine contrast-to-noise ratio, multi-energy and material decomposition capabilities. We have previously demonstrated the potential benefits of PCD-CT using phantoms, cadavers, and human studies on a prototype PCD-CT system. This system, however, had several limitations in terms of scan field-of-view (FOV) and longitudinal coverage. Recently, a full FOV (50 cm) PCD-CT system with wider longitudinal coverage and higher spatial resolution (0.15 mm detector pixels) has been installed in our lab capable of human scanning at clinical dose and dose rate. In this work, we share our initial experience of the new PCD-CT system and compare its performance with a state-of-the-art 3rd generation dual-source CT scanner. Basic image quality was assessed using an ACR CT accreditation phantom, high-resolution performance using an anthropomorphic head phantom, and multi-energy and material decomposition performance using a multi-energy CT phantom containing various concentrations of iodine and hydroxyapatite. Finally, we demonstrate the feasibility of high-resolution, full FOV PCD-CT imaging for improved delineation of anatomical and pathological features in a patient with pulmonary nodules.

5.
Phys Med ; 79: 126-136, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33249223

RESUMO

Photon-counting detectors are a promising new technology for computed tomography (CT) systems. They provide energy-resolved CT data at very high spatial resolution without electronic noise and with improved tissue contrasts. This review article gives an overview of the principles of photon-counting detector CT, of potential clinical benefits and limitations, and of the experience gained so far in pre-clinical installations.


Assuntos
Fótons , Tomografia Computadorizada por Raios X
6.
Invest Radiol ; 53(11): 655-662, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29847412

RESUMO

OBJECTIVE: The aims of this study were to quantitatively assess two new scan modes on a photon-counting detector computed tomography system, each designed to maximize spatial resolution, and to qualitatively demonstrate potential clinical impact using patient data. MATERIALS AND METHODS: This Health Insurance Portability Act-compliant study was approved by our institutional review board. Two high-spatial-resolution scan modes (Sharp and UHR) were evaluated using phantoms to quantify spatial resolution and image noise, and results were compared with the standard mode (Macro). Patients were scanned using a conventional energy-integrating detector scanner and the photon-counting detector scanner using the same radiation dose. In first patient images, anatomic details were qualitatively evaluated to demonstrate potential clinical impact. RESULTS: Sharp and UHR modes had a 69% and 87% improvement in in-plane spatial resolution, respectively, compared with Macro mode (10% modulation-translation-function values of 16.05, 17.69, and 9.48 lp/cm, respectively). The cutoff spatial frequency of the UHR mode (32.4 lp/cm) corresponded to a limiting spatial resolution of 150 µm. The full-width-at-half-maximum values of the section sensitivity profiles were 0.41, 0.44, and 0.67 mm for the thinnest image thickness for each mode (0.25, 0.25, and 0.5 mm, respectively). At the same in-plane spatial resolution, Sharp and UHR images had up to 15% lower noise than Macro images. Patient images acquired in Sharp mode demonstrated better delineation of fine anatomic structures compared with Macro mode images. CONCLUSIONS: Phantom studies demonstrated superior resolution and noise properties for the Sharp and UHR modes relative to the standard Macro mode and patient images demonstrated the potential benefit of these scan modes for clinical practice.


Assuntos
Cálculos Renais/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Ombro/diagnóstico por imagem , Crânio/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Adulto , Humanos , Imagens de Fantasmas , Fótons , Estudos Prospectivos , Reprodutibilidade dos Testes
7.
Invest Radiol ; 53(8): 486-494, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29794949

RESUMO

OBJECTIVES: The aims of this study were to assess the value of a dedicated sharp convolution kernel for photon counting detector (PCD) computed tomography (CT) for coronary stent imaging and to evaluate to which extent iterative reconstructions can compensate for potential increases in image noise. MATERIALS AND METHODS: For this in vitro study, a phantom simulating coronary artery stenting was prepared. Eighteen different coronary stents were expanded in plastic tubes of 3 mm diameter. Tubes were filled with diluted contrast agent, sealed, and immersed in oil calibrated to an attenuation of -100 HU simulating epicardial fat. The phantom was scanned in a modified second generation 128-slice dual-source CT scanner (SOMATOM Definition Flash, Siemens Healthcare, Erlangen, Germany) equipped with both a conventional energy integrating detector and PCD. Image data were acquired using the PCD part of the scanner with 48 × 0.25 mm slices, a tube voltage of 100 kVp, and tube current-time product of 100 mAs. Images were reconstructed using a conventional convolution kernel for stent imaging with filtered back-projection (B46) and with sinogram-affirmed iterative reconstruction (SAFIRE) at level 3 (I463). For comparison, a dedicated sharp convolution kernel with filtered back-projection (D70) and SAFIRE level 3 (Q703) and level 5 (Q705) was used. The D70 and Q70 kernels were specifically designed for coronary stent imaging with PCD CT by optimizing the image modulation transfer function and the separation of contrast edges. Two independent, blinded readers evaluated subjective image quality (Likert scale 0-3, where 3 = excellent), in-stent diameter difference, in-stent attenuation difference, mathematically defined image sharpness, and noise of each reconstruction. Interreader reliability was calculated using Goodman and Kruskal's γ and intraclass correlation coefficients (ICCs). Differences in image quality were evaluated using a Wilcoxon signed-rank test. Differences in in-stent diameter difference, in-stent attenuation difference, image sharpness, and image noise were tested using a paired-sample t test corrected for multiple comparisons. RESULTS: Interreader and intrareader reliability were excellent (γ = 0.953, ICCs = 0.891-0.999, and γ = 0.996, ICCs = 0.918-0.999, respectively). Reconstructions using the dedicated sharp convolution kernel yielded significantly better results regarding image quality (B46: 0.4 ± 0.5 vs D70: 2.9 ± 0.3; P < 0.001), in-stent diameter difference (1.5 ± 0.3 vs 1.0 ± 0.3 mm; P < 0.001), and image sharpness (728 ± 246 vs 2069 ± 411 CT numbers/voxel; P < 0.001). Regarding in-stent attenuation difference, no significant difference was observed between the 2 kernels (151 ± 76 vs 158 ± 92 CT numbers; P = 0.627). Noise was significantly higher in all sharp convolution kernel images but was reduced by 41% and 59% by applying SAFIRE levels 3 and 5, respectively (B46: 16 ± 1, D70: 111 ± 3, Q703: 65 ± 2, Q705: 46 ± 2 CT numbers; P < 0.001 for all comparisons). CONCLUSIONS: A dedicated sharp convolution kernel for PCD CT imaging of coronary stents yields superior qualitative and quantitative image characteristics compared with conventional reconstruction kernels. Resulting higher noise levels in sharp kernel PCD imaging can be partially compensated with iterative image reconstruction techniques.


Assuntos
Angiografia Coronária/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Stents , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Técnicas In Vitro , Fótons , Reprodutibilidade dos Testes
8.
Invest Radiol ; 53(6): 365-372, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29595753

RESUMO

PURPOSE: The aim of this study was to assess the clinical feasibility, image quality, and radiation dose implications of 0.25-mm imaging mode in a cohort of humans, achieved by dividing the photon-counting detector (PCD) size in half compared with standard-resolution photon-counting computed tomography (CT) (0.5 mm). METHODS: In this technical feasibility study, a whole-body prototype PCD-CT scanner was studied in the 0.25 mm detector mode (measured at isocenter). A high-resolution PCD-CT protocol was first tested in phantom and canine studies in terms of image noise and spatial resolution. Then, 8 human subjects (mean age, 58 ± 8 years; 2 men) underwent axial PCD 0.25-mm scans of the brain, the thorax, and at the level of the upper left kidney. Filtered backprojection reconstruction was performed with a sharp kernel (B70) for standard-resolution and high-resolution data at 0.5-mm isotropic image voxel. High-resolution data, in addition, were reconstructed with an ultrasharp kernel (U70) at 0.25-mm isotropic voxels. RESULTS: Image reconstructions from the PCD 0.25-mm detector system led to an improvement in resolution from 9 to 18 line pairs/cm in a line pair phantom. Modulation transfer function improved from 9.5 to 15.8 line pairs/cm at 10% modulation transfer function. When fully exploiting this improvement, image noise increased by 75% compared with dose-matched 0.5-mm slice PCD standard-resolution acquisition. However, when comparing with standard-resolution data at same in-plane resolution and slice thickness, the PCD 0.25-mm detector mode showed 19% less image noise in phantom, animal, and human scans. CONCLUSION: High-resolution photon-counting CT in humans showed improved image quality in terms of spatial resolution and image noise compared with standard-resolution photon-counting.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos , Imagem Corporal Total/métodos , Animais , Cães , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Animais , Imagens de Fantasmas , Fótons , Doses de Radiação
9.
Invest Radiol ; 53(3): 143-149, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28945655

RESUMO

PURPOSE: The aim of this study was to investigate computed tomography (CT) imaging characteristics of coronary stents using a novel photon-counting detector (PCD) in comparison with a conventional energy-integrating detector (EID). MATERIALS AND METHODS: In this in vitro study, 18 different coronary stents were expanded in plastic tubes of 3 mm diameter, were filled with contrast agent (diluted to an attenuation of 250 Hounsfield units [HU] at 120 kVp), and were sealed. Stents were placed in an oil-filled custom phantom calibrated to an attenuation of -100 HU at 120 kVp for resembling pericardial fat. The phantom was positioned in the gantry at 2 different angles at 0 degree and 90 degrees relative to the z axis, and was imaged in a research dual-source PCD-CT scanner. Detector subsystem "A" used a standard 64-row EID, while detector subsystem "B" used a PCD, allowing high-resolution scanning (detector pixel-size 0.250 × 0.250 mm in the isocenter). Images were obtained from both detector systems at identical tube voltage (100 kVp) and tube current-time product (100 mA), and were both reconstructed using a typical convolution kernel for stent imaging (B46f) and using the same reconstruction parameters. Two independent, blinded readers evaluated in-stent visibility and measured noise, intraluminal stent diameter, and in-stent attenuation for each detector subsystem. Differences in noise, intraluminal stent diameter, and in-stent attenuation where tested using a paired t test; differences in subjective in-stent visibility were evaluated using a Wilcoxon signed-rank test. RESULTS: Best results for in-stent visibility, noise, intraluminal stent diameter, and in-stent attenuation in EID and PCD were observed at 0-degree phantom position along the z axis, suggesting higher in-plane compared with through-plane resolution. Subjective in-stent visibility was superior in coronary stent images obtained from PCD compared with EID (P < 0.001). Mean in-stent diameter was 28.8% and 8.4% greater in PCD (0.85 ± 0.24 mm; 0.83 ± 0.14 mm) as compared with EID acquisitions (0.66 ± 0.21 mm; 0.76 ± 0.13 mm) for both 0-degree and 90-degree phantom positions, respectively. Average noise was significantly lower (P < 0.001) for PCD (5 ± 0.2 HU) compared with EID (8.3 ± 0.2 HU). The increase in in-stent attenuation (0 degree: Δ 245 ± 163 HU vs Δ 156.5 ± 126 HU; P = 0.006; 90 degrees: Δ 194 ± 141 HU vs Δ 126 ± 78 HU; P = 0.001) was significantly lower for PCD compared with EID acquisitions. CONCLUSIONS: At matched CT scan protocol settings and identical image reconstruction parameters, the PCD yields superior in-stent lumen delineation of coronary artery stents as compared with conventional EID arrays.


Assuntos
Angiografia por Tomografia Computadorizada/instrumentação , Angiografia por Tomografia Computadorizada/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Stents , Algoritmos , Meios de Contraste , Técnicas In Vitro , Fótons , Intensificação de Imagem Radiográfica/métodos
10.
J Med Imaging (Bellingham) ; 3(4): 043503, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28018936

RESUMO

Photon counting detector (PCD)-based computed tomography (CT) is an emerging imaging technique. Compared to conventional energy integrating detector (EID)-based CT, PCD-CT is able to exclude electronic noise that may severely impair image quality at low photon counts. This work focused on comparing the noise performance at low doses between the PCD and EID subsystems of a whole-body research PCD-CT scanner, both qualitatively and quantitatively. An anthropomorphic thorax phantom was scanned, and images of the shoulder portion were reconstructed. The images were visually and quantitatively compared between the two subsystems in terms of streak artifacts, an indicator of the impact of electronic noise. Furthermore, a torso-shaped water phantom was scanned using a range of tube currents. The product of the noise and the square root of the tube current was calculated, normalized, and compared between the EID and PCD subsystems. Visual assessment of the thorax phantom showed that electronic noise had a noticeably stronger degrading impact in the EID images than in the PCD images. The quantitative results indicated that in low-dose situations, electronic noise had a noticeable impact (up to a 5.8% increase in magnitude relative to quantum noise) on the EID images, but negligible impact on the PCD images.

11.
J Med Imaging (Bellingham) ; 3(4): 043504, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28042589

RESUMO

An ultrahigh-resolution (UHR) data collection mode was enabled on a whole-body, research photon counting detector (PCD) computed tomography system. In this mode, 64 rows of [Formula: see text] detector pixels were used, which corresponded to a pixel size of [Formula: see text] at the isocenter. Spatial resolution and image noise were quantitatively assessed for the UHR PCD scan mode, as well as for a commercially available UHR scan mode that uses an energy-integrating detector (EID) and a set of comb filters to decrease the effective detector size. Images of an anthropomorphic lung phantom, cadaveric swine lung, swine heart specimen, and cadaveric human temporal bone were qualitatively assessed. Nearly equivalent spatial resolution was demonstrated by the modulation transfer function measurements: 15.3 and [Formula: see text] spatial frequencies were achieved at 10% and 2% modulation, respectively, for the PCD system and 14.2 and [Formula: see text] for the EID system. Noise was 29% lower in the PCD UHR images compared to the EID UHR images, representing a potential dose savings of 50% for equivalent image noise. PCD UHR images from the anthropomorphic phantom and cadaveric specimens showed clear delineation of small structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...