Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Pharmacol ; 160(6): 1387-98, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20590629

RESUMO

BACKGROUND AND PURPOSE: Purinoceptors containing the P2X3 subunit (P2X3 homotrimeric and P2X2/3 heterotrimeric) are members of the P2X family of ion channels gated by ATP and may participate in primary afferent sensitization in a variety of pain-related diseases. The current work describes the in vitro pharmacological characteristics of AF-353, a novel, orally bioavailable, highly potent and selective P2X3/P2X2/3 receptor antagonist. EXPERIMENTAL APPROACH: The antagonistic potencies (pIC(50)) of AF-353 for rat and human P2X3 and human P2X2/3 receptors were determined using methods of radioligand binding, intracellular calcium flux and whole cell voltage-clamp electrophysiology. KEY RESULTS: The pIC(50) estimates for these receptors ranged from 7.3 to 8.5, while concentrations 300-fold higher had little or no effect on other P2X channels or on an assortment of receptors, enzymes and transporter proteins. In contrast to A-317491 and TNP-ATP, competition binding and intracellular calcium flux experiments suggested that AF-353 inhibits activation by ATP in a non-competitive fashion. Favourable pharmacokinetic parameters were observed in rat, with good oral bioavailability (%F = 32.9), reasonable half-life (t(1/2) = 1.63 h) and plasma-free fraction (98.2% protein bound). CONCLUSIONS AND IMPLICATIONS: The combination of a favourable pharmacokinetic profile with the antagonist potency and selectivity for P2X3 and P2X2/3 receptors suggests that AF-353 is an excellent in vivo tool compound for study of these channels in animal models and demonstrates the feasibility of identifying and optimizing molecules into potential clinical candidates, and, ultimately, into a novel class of therapeutics for the treatment of pain-related disorders.


Assuntos
Trifosfato de Adenosina/metabolismo , Éteres Fenílicos/farmacologia , Antagonistas do Receptor Purinérgico P2 , Pirimidinas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Células CHO , Cálcio/metabolismo , Cricetinae , Cricetulus , Meia-Vida , Humanos , Concentração Inibidora 50 , Masculino , Técnicas de Patch-Clamp , Éteres Fenílicos/administração & dosagem , Éteres Fenílicos/farmacocinética , Pirimidinas/administração & dosagem , Pirimidinas/farmacocinética , Ratos , Ratos Wistar , Receptores Purinérgicos P2X2 , Receptores Purinérgicos P2X3
2.
J Pharmacol Exp Ther ; 327(3): 982-90, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18801947

RESUMO

Although several antidepressants (including fluoxetine, imipramine, citalopram, venlafaxine, and duloxetine) are known to inhibit the serotonin transporter (SERT), whether or not these molecules compete with 5-hydroxytryptamine (serotonin) (5-HT) for binding to SERT has remained controversial. We have performed radioligand competition binding experiments and found that all data can be fitted via a simple competitive interaction model, using Cheng-Prusoff analysis (Biochem Pharmacol 22:3099-3108, 1973). Two different SERT-selective radioligands, [(3)H]N,N-dimethyl-2-(2-amino-4-cyanophenyl thio)-benzylamine (DASB) and [(3)H]S-citalopram, were used to probe competitive binding to recombinantly expressed human SERT or native SERT in rat cortical membranes. All the SERT inhibitors that we tested were able to inhibit [(3)H]DASB and [(3)H]S-citalopram binding in a concentration-dependent manner, with unity Hill coefficient. In accordance with the Cheng-Prusoff relationship for a competitive interaction, we observed that test compound concentrations associated with 50% maximal inhibition of radiotracer binding (IC(50)) increased linearly with increasing radioligand concentration for all ligands: 5-HT, S-citalopram, R-citalopram, paroxetine, clomipramine, fluvoxamine, imipramine venlafaxine, duloxetine, indatraline, cocaine, and 2-beta-carboxy-3-beta-(4-iodophenyl)tropane. The equilibrium dissociation constant of 5-HT and SERT inhibitors were also derived using Scatchard analysis of the data set, and they were found to be comparable with the data obtained using the Cheng-Prusoff relationship. Our studies establish a reference framework that will contribute to ongoing efforts to understand ligand binding modes at SERT by demonstrating that 5-HT and the SERT inhibitors tested bind to the serotonin transporter in a competitive manner.


Assuntos
Antidepressivos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/efeitos dos fármacos , Animais , Antidepressivos/farmacocinética , Ligação Competitiva , Membrana Celular , Córtex Cerebral , Humanos , Ensaio Radioligante , Ratos , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
3.
J Pharmacol Exp Ther ; 327(3): 991-1000, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18801948

RESUMO

Several serotonin reuptake inhibitors are in clinical use for treatment of depression and anxiety disorders. However, to date, reported pharmacological differentiation of these ligands has focused mainly on their equilibrium binding affinities for the serotonin transporter. This study takes a new look at antidepressant binding modes using radioligand binding assays with [(3)H]S-citalopram to determine equilibrium and kinetic rate constants across multiple temperatures. The observed dissociation rate constants at 26 degrees C fall into a narrow range for all molecules. Conversely, association rate constants generally decreased with increasing equilibrium binding affinities. Consistent with this, the measured activation energy for S-citalopram association was relatively large (19.5 kcal . mol(-1)), suggesting conformational change upon ligand binding. For most of the drugs, including citalopram, the enthalpy (DeltaH(O)) and entropy (-TDeltaS(O)) contributions to reaction energetics were determined by van't Hoff analyses to be roughly equivalent (25-75% DeltaG(O)) and to correlate (positively for enthalpy) with the polar surface area of the drug. However, the binding of the drug fluvoxamine was predominantly entropically driven. When these data are considered in the context of the physicochemical properties of these ligands, two distinct binding modes can be proposed. The citalopram-type binding mode probably uses a polar binding pocket that allows charged or polar interactions between ligand and receptor with comparatively small loss in enthalpy due to dehydration. The fluvoxamine-type binding mode is fueled by energy released upon burying hydrophobic ligand moieties into a binding pocket that is flexible enough to suffer minimal loss in entropy from conformational constraint.


Assuntos
Inibidores Seletivos de Recaptação de Serotonina/farmacocinética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Antidepressivos/farmacocinética , Citalopram , Entropia , Fluvoxamina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Ligação Proteica , Ensaio Radioligante , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Eletricidade Estática , Temperatura , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...