Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Interface Focus ; 13(6): 20230033, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38106915

RESUMO

Assessment of left atrial (LA) fibrosis from late gadolinium enhancement (LGE) magnetic resonance imaging (MRI) adds to the management of patients with atrial fibrillation. However, accurate assessment of fibrosis in the LA wall remains challenging. Excluding anatomical structures in the LA proximity using clipping techniques can reduce misclassification of LA fibrosis. A novel FK-means approach for combined automatic clipping and automatic fibrosis segmentation was developed. This approach combines a feature-based Voronoi diagram with a hierarchical 3D K-means fractal-based method. The proposed automatic Voronoi clipping method was applied on LGE-MRI data and achieved a Dice score of 0.75, similar to the score obtained by a deep learning method (3D UNet) for clipping (0.74). The automatic fibrosis segmentation method, which uses the Voronoi clipping method, achieved a Dice score of 0.76. This outperformed a 3D UNet method for clipping and fibrosis classification, which had a Dice score of 0.69. Moreover, the proposed automatic fibrosis segmentation method achieved a Dice score of 0.90, using manual clipping of anatomical structures. The findings suggest that the automatic FK-means analysis approach enables reliable LA fibrosis segmentation and that clipping of anatomical structures in the atrial proximity can add to the assessment of atrial fibrosis.

2.
Front Cardiovasc Med ; 9: 960403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36148079

RESUMO

The Multimapping technique was recently proposed for simultaneous myocardial T1 and T2 mapping. In this study, we evaluate its correlation with clinical reference mapping techniques in patients with a range of cardiovascular diseases (CVDs) and compare image quality and inter- and intra-observer repeatability. Multimapping consists of an ECG-triggered, 2D single-shot bSSFP readout with inversion recovery and T2 preparation modules, acquired across 10 cardiac cycles. The sequence was implemented at 1.5T and compared to clinical reference mapping techniques, modified Look-Locker inversion recovery (MOLLI) and T2 prepared bSSFP with four echo times (T2bSSFP), and compared in 47 patients with CVD (of which 44 were analyzed). In diseased myocardial segments (defined as the presence of late gadolinium enhancement), there was a high correlation between Multimapping and MOLLI for native myocardium T1 (r 2 = 0.73), ECV (r2 = 0.91), and blood T1 (r2 = 0.88), and Multimapping and T2bSSFP for native myocardial T2 (r2 = 0.80). In healthy myocardial segments, a bias for native T1 (Multimapping = 1,116 ± 21 ms, MOLLI = 1,002 ± 21, P < 0.001), post-contrast T1 (Multimapping = 479 ± 31 ms, MOLLI = 426 ± 27 ms, 0.001), ECV (Multimapping = 21.5 ± 1.9%, MOLLI = 23.7 ± 2.3%, P = 0.001), and native T2 (Multimapping = 48.0 ± 3.0 ms, T2bSSFP = 53.9 ± 3.5 ms, P < 0.001) was observed. The image quality for Multimapping was scored as higher for all mapping techniques (native T1, post-contrast T1, ECV, and T2bSSFP) compared to the clinical reference techniques. The inter- and intra-observer agreements were excellent (intraclass correlation coefficient, ICC > 0.9) for most measurements, except for inter-observer repeatability of Multimapping native T1 (ICC = 0.87), post-contrast T1 (ICC = 0.73), and T2bSSFP native T2 (ICC = 0.88). Multimapping shows high correlations with clinical reference mapping techniques for T1, T2, and ECV in a diverse cohort of patients with different cardiovascular diseases. Multimapping enables simultaneous T1 and T2 mapping and can be performed in a short breath-hold, with image quality superior to that of the clinical reference techniques.

3.
Front Cardiovasc Med ; 9: 884221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571164

RESUMO

Introduction: To develop and test the feasibility of free-breathing (FB), high-resolution quantitative first-pass perfusion cardiac MR (FPP-CMR) using dual-echo Dixon (FOSTERS; Fat-water separation for mOtion-corrected Spatio-TEmporally accelerated myocardial peRfuSion). Materials and Methods: FOSTERS was performed in FB using a dual-saturation single-bolus acquisition with dual-echo Dixon and a dynamically variable Cartesian k-t undersampling (8-fold) approach, with low-rank and sparsity constrained reconstruction, to achieve high-resolution FPP-CMR images. FOSTERS also included automatic in-plane motion estimation and T 2 * correction to obtain quantitative myocardial blood flow (MBF) maps. High-resolution (1.6 x 1.6 mm2) FB FOSTERS was evaluated in eleven patients, during rest, against standard-resolution (2.6 x 2.6 mm2) 2-fold SENSE-accelerated breath-hold (BH) FPP-CMR. In addition, MBF was computed for FOSTERS and spatial wavelet-based compressed sensing (CS) reconstruction. Two cardiologists scored the image quality (IQ) of FOSTERS, CS, and standard BH FPP-CMR images using a 4-point scale (1-4, non-diagnostic - fully diagnostic). Results: FOSTERS produced high-quality images without dark-rim and with reduced motion-related artifacts, using an 8x accelerated FB acquisition. FOSTERS and standard BH FPP-CMR exhibited excellent IQ with an average score of 3.5 ± 0.6 and 3.4 ± 0.6 (no statistical difference, p > 0.05), respectively. CS images exhibited severe artifacts and high levels of noise, resulting in an average IQ score of 2.9 ± 0.5. MBF values obtained with FOSTERS presented a lower variance than those obtained with CS. Discussion: FOSTERS enabled high-resolution FB FPP-CMR with MBF quantification. Combining motion correction with a low-rank and sparsity-constrained reconstruction results in excellent image quality.

4.
J Magn Reson Imaging ; 56(5): 1393-1403, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35128754

RESUMO

BACKGROUND: Epicardial adipose tissue (EAT) may induce left atrium (LA) wall inflammation and promote LA fibrosis. Therefore, simultaneous assessment of these two important atrial fibrillation (AF) risk factors would be desirable. PURPOSE: To perform a comprehensive evaluation of 3D Dixon water-fat separated late gadolinium enhancement (LGE-Dixon) MRI by analysis of repeatability and systematic comparison with reference methods for assessment of fibrosis and fat. STUDY TYPE: Prospective. POPULATION: Twenty-eight, 10, and 7 patients, respectively, with clinical indications for cardiac MRI. FIELD STRENGTH/SEQUENCE: A 1.5-T scanner, inversion recovery multiecho spoiled gradient echo. ASSESSMENT: Twenty-eight patients (age 58 ± 19 years, 15 males) were scanned using LGE-Dixon. A 5-point Likert-type scale was used to grade the image quality. Another 10 patients (age 46 ± 19 years, 9 males) were scanned using LGE-Dixon and 3D proton density Dixon (PD-Dixon). Finally, seven patients (age 62 ± 14 years, 4 males) were scanned using LGE-Dixon and conventional LGE. The scan time, intraobserver and interobserver variability, and levels of agreement were assessed. STATISTICAL TESTS: Student's t-test, one-way ANOVA, and Mann-Whitney U-test were used; P < 0.05 was considered significant, intraclass correlation coefficient (ICC). RESULTS: The scan time (minutes:seconds) for LGE-Dixon (n = 28) was 5:01 ± 1:40. ICC values for intraobserver and interobserver measurements of LA wall fibrosis percentage were 0.98 (95% CI, 0.97-0.99) and 0.97 (95% CI, 0.94-0.99) while of EAT were 0.92 (95% CI, 0.82-0.97) and 0.90 (95% CI, 0.80-0.95). The agreement for LA fibrosis percentage between the LGE-Dixon and the conventional LGE was 0.92 (95% CI, 0.66-0.99) and for EAT volume between the LGE-Dixon and the PD-Dixon was 0.93 (95% CI, 0.72-0.98). CONCLUSION: LA fibrosis and EAT can be assessed simultaneously using LGE-Dixon. This method allows a high level of intraobserver and interobserver repeatability as well as agreement with reference methods and can be performed in a clinically feasible scan time. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Fibrilação Atrial , Gadolínio , Tecido Adiposo/diagnóstico por imagem , Adulto , Idoso , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/patologia , Meios de Contraste , Fibrose , Átrios do Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Prótons , Água
5.
Magn Reson Med ; 87(5): 2347-2362, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34985143

RESUMO

PURPOSE: To implement and evaluate a new dictionary-based technique for native myocardial T1 and T2 mapping using Cartesian sampling. METHODS: The proposed technique (Multimapping) consisted of single-shot Cartesian image acquisitions in 10 consecutive cardiac cycles, with inversion pulses in cycle 1 and 5, and T2 preparation (TE: 30 ms, 50 ms, and 70 ms) in cycles 8-10. Multimapping was simulated for different T1 and T2 , where entries corresponding to the k-space centers were matched to acquired data. Experiments were performed in a phantom, 16 healthy subjects, and 3 patients with cardiovascular disease. RESULTS: Multimapping phantom measurements showed good agreement with reference values for both T1 and T2 , with no discernable heart-rate dependency for T1 and T2 within the range of myocardium. In vivo mean T1 in healthy subjects was significantly higher using Multimapping (T1 = 1114 ± 14 ms) compared to the reference (T1 = 991 ± 26 ms) (p < 0.01). Mean Multimapping T2 (47.1 ± 1.3 ms) and T2 spatial variability (5.8 ± 1.0 ms) was significantly lower compared to the reference (T2 = 54.7 ± 2.2 ms, p < 0.001; spatial variability = 8.4 ± 2.0 ms, p < 0.01). Increased T1 and T2 was detected in all patients using Multimapping. CONCLUSIONS: Multimapping allows for simultaneous native myocardial T1 and T2 mapping with a conventional Cartesian trajectory, demonstrating promising in vivo image quality and parameter quantification results.


Assuntos
Coração , Miocárdio , Imagens de Fantasmas , Coração/diagnóstico por imagem , Humanos , Valores de Referência , Reprodutibilidade dos Testes
6.
MAGMA ; 35(5): 711-718, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34958438

RESUMO

OBJECTIVE: To evaluate systolic flow-sensitive alternating inversion recovery (FAIR) during rest and exercise stress using 2RR (two cardiac cycles) or 1RR intervals between inversion pulse and imaging. MATERIALS AND METHODS: 1RR and 2RR FAIR was implemented on a 3T scanner. Ten healthy subjects were scanned during rest and stress. Stress was performed using an in-bore ergometer. Heart rate, mean myocardial blood flow (MBF) and temporal signal-to-noise ratio (TSNR) were compared using paired t tests. RESULTS: Mean heart rate during stress was higher than rest for 1RR FAIR (85.8 ± 13.7 bpm vs 63.3 ± 11.1 bpm; p < 0.01) and 2RR FAIR (83.8 ± 14.2 bpm vs 63.1 ± 10.6 bpm; p < 0.01). Mean stress MBF was higher than rest for 1RR FAIR (2.97 ± 0.76 ml/g/min vs 1.43 ± 0.6 ml/g/min; p < 0.01) and 2RR FAIR (2.8 ± 0.96 ml/g/min vs 1.22 ± 0.59 ml/g/min; p < 0.01). Resting mean MBF was higher for 1RR FAIR than 2RR FAIR (p < 0.05), but not during stress. TSNR was lower for stress compared to rest for 1RR FAIR (4.52 ± 2.54 vs 10.12 ± 3.69; p < 0.01) and 2RR FAIR (7.36 ± 3.78 vs 12.41 ± 5.12; p < 0.01). 2RR FAIR TSNR was higher than 1RR FAIR for rest (p < 0.05) and stress (p < 0.001). DISCUSSION: We have demonstrated feasibility of systolic FAIR in rest and exercise stress. 2RR delay systolic FAIR enables non-contrast perfusion assessment during stress with relatively high TSNR.


Assuntos
Imagem de Perfusão do Miocárdio , Circulação Coronária/fisiologia , Coração , Humanos , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Razão Sinal-Ruído
7.
J Magn Reson Imaging ; 55(1): 61-80, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33078512

RESUMO

MRI is a versatile technique that offers many different options for tissue contrast, including suppressing the blood signal, so-called black-blood contrast. This contrast mechanism is extremely useful to visualize the vessel wall with high conspicuity or for characterization of tissue adjacent to the blood pool. In this review we cover the physics of black-blood contrast and different techniques to achieve blood suppression, from methods intrinsic to the imaging readout to magnetization preparation pulses that can be combined with arbitrary readouts, including flow-dependent and flow-independent techniques. We emphasize the technical challenges of black-blood contrast that can depend on flow and motion conditions, additional contrast weighting mechanisms (T1 , T2 , etc.), magnetic properties of the tissue, and spatial coverage. Finally, we describe specific implementations of black-blood contrast for different vascular beds. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY STAGE: 5.


Assuntos
Imageamento por Ressonância Magnética , Física
8.
NMR Biomed ; 34(2): e4436, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33150707

RESUMO

Quantitative myocardial perfusion can be achieved without contrast agents using flow-sensitive alternating inversion recovery (FAIR) arterial spin labeling. However, FAIR has an intrinsically low sensitivity, which may be improved by mitigating the effects of physiological noise or by increasing the area of artifact-free myocardium. The aim of this study was to investigate if systolic FAIR may increase the amount of analyzable myocardium compared with diastolic FAIR and its effect on physiological noise. Furthermore, we compare parallel imaging acceleration with a factor of 2 with compressed sensing acceleration with a factor of 3 for systolic FAIR. Twelve healthy subjects were scanned during rest on a 3 T scanner using diastolic FAIR with parallel imaging factor 2 (FAIR-PI2D ), systolic FAIR with the same acceleration (FAIR-PI2S ) and systolic FAIR with compressed sensing factor 3 (FAIR-CS3S ). The number of analyzable pixels in the myocardium, temporal signal-to-noise ratio (TSNR) and mean myocardial blood flow (MBF) were calculated for all methods. The number of analyzable pixels using FAIR-CS3S (663 ± 55) and FAIR-PI2S (671 ± 58) was significantly higher than for FAIR-PI2D (507 ± 82; P = .001 for both), while there was no significant difference between FAIR-PI2S and FAIR-CS3S . The mean TSNR of the midventricular slice for FAIR-PI2D was 11.4 ± 3.9, similar to that of FAIR-CS3S, which was 11.0 ± 3.3, both considerably higher than for FAIR-PI2S, which was 8.4 ± 3.1 (P < .05 for both). Mean MBF was similar for all three methods. The use of compressed sensing accelerated systolic FAIR benefits from an increased number of analyzable myocardial pixels compared with diastolic FAIR without suffering from a TSNR penalty, unlike systolic FAIR with parallel imaging acceleration.


Assuntos
Angiografia/métodos , Vasos Coronários/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Adulto , Compressão de Dados , Diástole , Feminino , Frequência Cardíaca , Hemorreologia , Humanos , Masculino , Descanso , Marcadores de Spin , Sístole
9.
Sci Rep ; 10(1): 12684, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728198

RESUMO

Dynamic contrast-enhanced quantitative first-pass perfusion using magnetic resonance imaging enables non-invasive objective assessment of myocardial ischemia without ionizing radiation. However, quantification of perfusion is challenging due to the non-linearity between the magnetic resonance signal intensity and contrast agent concentration. Furthermore, respiratory motion during data acquisition precludes quantification of perfusion. While motion correction techniques have been proposed, they have been hampered by the challenge of accounting for dramatic contrast changes during the bolus and long execution times. In this work we investigate the use of a novel free-breathing multi-echo Dixon technique for quantitative myocardial perfusion. The Dixon fat images, unaffected by the dynamic contrast-enhancement, are used to efficiently estimate rigid-body respiratory motion and the computed transformations are applied to the corresponding diagnostic water images. This is followed by a second non-linear correction step using the Dixon water images to remove residual motion. The proposed Dixon motion correction technique was compared to the state-of-the-art technique (spatiotemporal based registration). We demonstrate that the proposed method performs comparably to the state-of-the-art but is significantly faster to execute. Furthermore, the proposed technique can be used to correct for the decay of signal due to T2* effects to improve quantification and additionally, yields fat-free diagnostic images.


Assuntos
Imageamento por Ressonância Magnética/métodos , Isquemia Miocárdica/diagnóstico por imagem , Imagem de Perfusão do Miocárdio/métodos , Estudos de Viabilidade , Humanos , Reprodutibilidade dos Testes , Respiração
10.
BMC Med Imaging ; 20(1): 80, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32664848

RESUMO

BACKGROUND: There is an increased interest in quantifying and characterizing epicardial fat which has been linked to various cardiovascular diseases such as coronary artery disease and atrial fibrillation. Recently, three-dimensional single-phase Dixon techniques have been used to depict the heart and to quantify the surrounding fat. The purpose of this study was to investigate the merits of a new high-resolution cine 3D Dixon technique for quantification of epicardial adipose tissue and compare it to single-phase 3D Dixon in patients with cardiovascular disease. METHODS: Fifteen patients referred for clinical CMR examination of known or suspected heart disease were scanned on a 1.5 T scanner using single-phase Dixon and cine Dixon. Epicardial fat was segmented by three readers and intra- and inter-observer variability was calculated per slice. Cine Dixon segmentation was performed in the same cardiac phase as single-phase Dixon. Subjective image quality assessment of water and fat images were performed by three readers using a 4-point Likert scale (1 = severe; 2 = significant; 3 = mild; 4 = no blurring of cardiac structures). RESULTS: Intra-observer variability was excellent for cine Dixon images (ICC = 0.96), and higher than single-phase Dixon (ICC = 0.92). Inter-observer variability was good for cine Dixon (ICC = 0.76) and moderate for single-phase Dixon (ICC = 0.63). The intra-observer measurement error (mean ± standard deviation) per slice for cine was - 0.02 ± 0.51 ml (- 0.08 ± 0.4%), and for single-phase 0.39 ± 0.72 ml (0.18 ± 0.41%). Inter-observer measurement error for cine was 0.46 ± 0.98 ml (0.11 ± 0.46%) and for single-phase 0.42 ± 1.53 ml (0.17 ± 0.47%). Visual scoring of the water image yielded median of 2 (interquartile range = [Q3-Q1] 2-2) for cine and median of 3 (interquartile range = 3-2) for single-phase (P < 0.05) while no significant difference was found for the fat images, both techniques yielding a median of 3 and interquartile range of 3-2. CONCLUSION: Cine Dixon can be used to quantify epicardial fat with lower intra- and inter-observer variability compared to standard single-phase Dixon. The time-resolved information provided by the cine acquisition appears to support the delineation of the epicardial adipose tissue depot.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Doenças Cardiovasculares/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Pericárdio/diagnóstico por imagem , Adulto , Idoso , Feminino , Humanos , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Estudo de Prova de Conceito
11.
Magn Reson Med ; 84(6): 3308-3315, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32459007

RESUMO

PURPOSE: Late gadolinium enhancement (LGE) of the left atrium is susceptible to artifacts arising from the right pulmonary veins, caused by inflowing blood tagged by the navigator restore pulse. The purpose of this study was to evaluate a new method to reduce the inflow artifact using an adaptive flip-angle restore pulse. METHODS: A low-restore angle reduces the inflow artifact but may lead to a poor navigator SNR. The proposed approach aims to determine the patient-specific restore angle, which optimizes the trade-off between inflow artifacts and navigator SNR. Three-dimensional LGE with adaptive navigator restore (3D LGEA ) was implemented by incrementing the flip angle of the restore pulse from a starting value of 0°, based on the navigator normalized cross-correlation. Magnetic resonance imaging experiments were performed on a 1.5T scanner. The value of 3D LGEA was compared with 3D LGE with a constant 180° restore pulse (3D LGE180 ) in 22 patients with heart diseases. The values of 3D LGEA and 3D LGE180 were compared in terms of pulmonary vein blood signal relative to reference blood in the descending aorta (PVrel ) and visual scoring to determine level of motion artifacts using a 4-point scale (1 = severe artifacts; 4 = no artifacts). RESULTS: The value of PVrel was significantly lower for 3D LGEA than for 3D LGE180 (1.16 ± 0.23 vs. 1.59 ± 0.29, P < .001). Furthermore, visual scoring of the motion artifacts yielded no difference (P = .78). CONCLUSION: Adaptively adjusting the navigator restore flip angle based on the navigator normalized cross-correlation reduces the 3D LGE inflow artifact without affecting image quality or the scan time.


Assuntos
Artefatos , Gadolínio , Meios de Contraste , Átrios do Coração/diagnóstico por imagem , Humanos , Aumento da Imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética
12.
PLoS One ; 15(4): e0221071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32275668

RESUMO

PURPOSE: To accelerate the acquisition of free-breathing 3D saturation-recovery-based (SASHA) myocardial T1 mapping by acquiring fewer saturation points in combination with a post-processing 3D denoising technique to maintain high accuracy and precision. METHODS: 3D SASHA T1 mapping acquires nine T1-weighted images along the saturation recovery curve, resulting in long acquisition times. In this work, we propose to accelerate conventional cardiac T1 mapping by reducing the number of saturation points. High T1 accuracy and low standard deviation (as a surrogate for precision) is maintained by applying a 3D denoising technique to the T1-weighted images prior to pixel-wise T1 fitting. The proposed approach was evaluated on a T1 phantom and 20 healthy subjects, by varying the number of T1-weighted images acquired between three and nine, both prospectively and retrospectively. Following the results from the healthy subjects, three patients with suspected cardiovascular disease were acquired using five T1-weighted images. T1 accuracy and precision was determined for all the acquisitions before and after denoising. RESULTS: In the T1 phantom, no statistical difference was found in terms of accuracy and precision for the different number of T1-weighted images before or after denoising (P = 0.99 and P = 0.99 for accuracy, P = 0.64 and P = 0.42 for precision, respectively). In vivo, both prospectively and retrospectively, the precision improved considerably with the number of T1-weighted images employed before denoising (P<0.05) but was independent on the number of T1-weighted images after denoising. CONCLUSION: We demonstrate the feasibility of accelerating 3D SASHA T1 mapping by reducing the number of acquired T1-weighted images in combination with an efficient 3D denoising, without affecting accuracy and precision of T1 values.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Humanos , Imageamento Tridimensional/economia , Imageamento Tridimensional/instrumentação , Imageamento por Ressonância Magnética/economia , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Estudos Retrospectivos
13.
Magn Reson Med ; 83(1): 178-187, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31400054

RESUMO

PURPOSE: To combine a 3D saturation-recovery-based myocardial T1 mapping (3D SASHA) sequence with a 2D image navigator with fat excitation (fat-iNAV) to allow 3D T1 maps with 100% respiratory scan efficiency and predictable scan time. METHODS: Data from T1 phantom and 10 subjects were acquired at 1.5T. For respiratory motion compensation, a 2D fat-iNAV was acquired before each 3D SASHA k-space segment to correct for 2D translational motion in a beat-to-beat fashion. The effect of the fat-iNAV on the 3D SASHA T1 estimation was evaluated on the T1 phantom. For 3 representative subjects, the proposed free-breathing 3D SASHA with fat-iNAV was compared to the original implementation with the diaphragmatic navigator. The 3D SASHA with fat-iNAV was compared to the breath-hold 2D SASHA sequence in terms of accuracy and precision. RESULTS: In the phantom study, the Bland-Altman plot shows that the 2D fat-iNAVs does not affect the T1 quantification of the 3D SASHA acquisition (0 ± 12.5 ms). For the in vivo study, the 2D fat-iNAV permits to estimate the respiratory motion of the heart, while allowing for 100% scan efficiency, improving the precision of the T1 measurement compared to non-motion-corrected 3D SASHA. However, the image quality achieved with the proposed 3D SASHA with fat-iNAV is lower compared to the original implementation, with reduced delineation of the myocardial borders and papillary muscles. CONCLUSIONS: We demonstrate the feasibility to combine the 3D SASHA T1 mapping imaging sequence with a 2D fat-iNAV for respiratory motion compensation, allowing 100% respiratory scan efficiency and predictable scan time.


Assuntos
Tecido Adiposo/diagnóstico por imagem , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Respiração , Adulto , Algoritmos , Suspensão da Respiração , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Masculino , Miocárdio , Imagens de Fantasmas , Reprodutibilidade dos Testes
14.
J Cardiovasc Magn Reson ; 21(1): 13, 2019 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-30798789

RESUMO

AIMS: To investigate the use of respiratory motion compensation using image-based navigation (iNAV) with constant respiratory efficiency using single end-expiratory thresholding (CRUISE) for coronary magnetic resonance angiography (CMRA), and compare it to the conventional diaphragmatic navigator (dNAV) in paediatric patients with congenital or suspected heart disease. METHODS: iNAV allowed direct tracking of the respiratory heart motion and was generated using balanced steady state free precession startup echoes. Respiratory gating was achieved using CRUISE with a fixed 50% efficiency. Whole-heart CMRA was acquired with 1.3 mm isotropic resolution. For comparison, CMRA with identical imaging parameters were acquired using dNAV. Scan time, visualization of coronary artery origins and mid-course, imaging quality and sharpness was compared between the two sequences. RESULTS: Forty patients (13 females; median weight: 44 kg; median age: 12.6, range: 3 months-17 years) were enrolled. 25 scans were performed in awake patients. A contrast agent was used in 22 patients. The scan time was significantly reduced using iNAV for awake patients (iNAV 7:48 ± 1:26 vs dNAV 9:48 ± 3:11, P = 0.01) but not for patients under general anaesthesia (iNAV = 6:55 ± 1:50 versus dNAV = 6:32 ± 2:16; P = 0.32). In 98% of the cases, iNAV image quality had an equal or higher score than dNAV. The visual score analysis showed a clear difference, favouring iNAV (P = 0.002). The right coronary artery and the left anterior descending vessel sharpness was significantly improved (iNAV: 56.8% ± 10.1% vs dNAV: 53.7% ± 9.9%, P < 0.002 and iNAV: 55.8% ± 8.6% vs dNAV: 53% ± 9.2%, P = 0.001, respectively). CONCLUSION: iNAV allows for a higher success-rate and clearer depiction of the mid-course of coronary arteries in paediatric patients. Its acquisition time is shorter in awake patients and image quality score is equal or superior to the conventional method in most cases.


Assuntos
Vasos Coronários/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Angiografia por Ressonância Magnética , Imagem Cinética por Ressonância Magnética , Respiração , Adolescente , Artefatos , Criança , Pré-Escolar , Meios de Contraste/administração & dosagem , Vasos Coronários/fisiopatologia , Feminino , Cardiopatias Congênitas/fisiopatologia , Humanos , Lactente , Masculino , Meglumina/administração & dosagem , Compostos Organometálicos/administração & dosagem , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo , Fluxo de Trabalho
15.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2723-2726, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946457

RESUMO

Motion imaging phantoms are expensive, bulky and difficult to transport and set-up. The purpose of this paper is to demonstrate a simple approach to the design of multi-modality motion imaging phantoms that use mechanically stored energy to produce motion.We propose two phantom designs that use mainsprings and elastic bands to store energy. A rectangular piece was attached to an axle at the end of the transmission chain of each phantom, and underwent a rotary motion upon release of the mechanical motor. The phantoms were imaged with MRI and US, and the image sequences were embedded in a 1D non linear manifold (Laplacian Eigenmap) and the spectrogram of the embedding was used to derive the angular velocity over time. The derived velocities were consistent and reproducible within a small error. The proposed motion phantom concept showed great potential for the construction of simple and affordable motion phantoms.


Assuntos
Movimento (Física) , Imageamento por Ressonância Magnética , Imagens de Fantasmas
16.
MAGMA ; 32(2): 281-289, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30191345

RESUMO

PURPOSE: To improve the precision of a free-breathing 3D saturation-recovery-based myocardial T1 mapping sequence using a post-processing 3D denoising technique. METHODS: A T1 phantom and 15 healthy subjects were scanned on a 1.5 T MRI scanner using 3D saturation-recovery single-shot acquisition (SASHA) for myocardial T1 mapping. A 3D denoising technique was applied to the native T1-weighted images before pixel-wise T1 fitting. The denoising technique imposes edge-preserving regularity and exploits the co-occurrence of 3D spatial gradients in the native T1-weighted images by incorporating a multi-contrast Beltrami regularization. Additionally, 2D modified Look-Locker inversion recovery (MOLLI) acquisitions were performed for comparison purposes. Accuracy and precision were measured in the myocardial septum of 2D MOLLI and 3D SASHA T1 maps and then compared. Furthermore, the accuracy and precision of the proposed approach were evaluated in a standardized phantom in comparison to an inversion-recovery spin-echo sequence (IRSE). RESULTS: For the phantom study, Bland-Altman plots showed good agreement in terms of accuracy between IRSE and 3D SASHA, both on non-denoised and denoised T1 maps (mean difference -1.4 ± 18.9 ms and -4.4 ± 21.2 ms, respectively), while 2D MOLLI generally underestimated the T1 values (69.4 ± 48.4 ms). For the in vivo study, there was a statistical difference between the precision measured on 2D MOLLI and on non-denoised 3D SASHA T1 maps (P = 0.005), while there was no statistical difference after denoising (P = 0.95). CONCLUSION: The precision of 3D SASHA myocardial T1 mapping was substantially improved using a 3D Beltrami regularization based denoising technique and was similar to that of 2D MOLLI T1 mapping, while preserving the higher accuracy and whole-heart coverage of 3D SASHA.


Assuntos
Técnicas de Imagem Cardíaca/métodos , Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Técnicas de Imagem Cardíaca/estatística & dados numéricos , Estudos de Viabilidade , Voluntários Saudáveis , Humanos , Aumento da Imagem/métodos , Imageamento Tridimensional/estatística & dados numéricos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Imagens de Fantasmas , Reprodutibilidade dos Testes
17.
MAGMA ; 32(2): 291, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30298196

RESUMO

The original version of this article unfortunately contained a mistake. The presentation of Equation was incorrect. The corrected equation is given below.

18.
Circ Cardiovasc Imaging ; 11(11)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30524648

RESUMO

Background: Optimal healing of the myocardium following myocardial infarction (MI) requires a suitable degree of inflammation and its timely resolution, together with a well-orchestrated deposition and degradation of extracellular matrix (ECM) proteins. Methods and Results: MI and SHAM-operated animals were imaged at 3,7,14 and 21 days with 3T magnetic resonance imaging (MRI) using a 19F/1H surface coil. Mice were injected with 19F-perfluorocarbon (PFC) nanoparticles to study inflammatory cell recruitment, and with a gadolinium-based elastin-binding contrast agent (Gd-ESMA) to evaluate elastin content. 19F MRI signal co-localized with infarction areas, as confirmed by late-gadolinium enhancement, and was highest 7days post-MI, correlating with macrophage content (MAC-3 immunohistochemistry) (ρ=0.89,P<0.0001). 19F quantification with in vivo (MRI) and ex vivo nuclear magnetic resonance (NMR) spectroscopy correlated linearly (ρ=0.58,P=0.020). T1 mapping after Gd-ESMA injection showed increased relaxation rate (R1) in the infarcted regions and was significantly higher at 21days compared with 7days post-MI (R1[s-1]:21days=2.8 [IQR,2.69-3.30] vs 7days=2.3 [IQR,2.12-2.5], P<0.05), which agreed with an increased tropoelastin content (ρ=0.89, P<0.0001). The predictive value of each contrast agent for beneficial remodeling was evaluated in a longitudinal proof-of-principle study. Neither R1 nor 19F at day 7 were significant predictors for beneficial remodeling (P=0.68;P=0.062). However, the combination of both measurements (R1<2.34Hz and 0.55≤19F≤1.85) resulted in an odds ratio of 30.0 (CI95%:1.41-638.15;P=0.029) for favorable post-MI remodeling. Conclusions: Multinuclear 1H/19F MRI allows the simultaneous assessment of inflammation and elastin remodeling in a murine MI model. The interplay of these biological processes affects cardiac outcome and may have potential for improved diagnosis and personalized treatment.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Infarto do Miocárdio/complicações , Miocardite/metabolismo , Miocárdio/metabolismo , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Imagem Cinética por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/metabolismo , Miocardite/diagnóstico , Miocardite/etiologia , Miocárdio/patologia
19.
J Cardiovasc Magn Reson ; 20(1): 76, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30474554

RESUMO

BACKGROUND: Volumetric black-blood cardiovascular magnetic resonance (CMR) has been hampered by long scan times and flow sensitivity. The purpose of this study was to assess the feasibility of black-blood, electrocardiogram (ECG)-triggered and respiratory-navigated 3D fast spin echo (3D FSE) for the visualization of the whole heart and great vessels. METHODS: The implemented 3D FSE technique used slice-selective excitation and non-selective refocusing pulses with variable flip angles to achieve constant echo signal for tissue with T1 (880 ms) and T2 (40 ms) similar to the vessel wall. Ten healthy subjects and 21 patients with congenital heart disease (CHD) underwent 3D FSE and conventional 3D balanced steady-state free precession (bSSFP). The sequences were compared in terms of ability to perform segmental assessment, local signal-to-noise ratio (SNRl) and local contrast-to-noise ratio (CNRl). RESULTS: In both healthy subjects and patients with CHD, 3D FSE showed superior pulmonary vein but inferior coronary artery origin visualisation compared to 3D bSFFP. However, in patients with CHD the combination of 3D bSSFP and 3D FSE whole-heart imaging improves the success rate of cardiac morphological diagnosis to 100% compared to either technique in isolation (3D FSE, 23.8% success rate, 3D bSSFP, 5% success rate). In the healthy subjects SNRl for 3D bSSFP was greater than for 3D FSE (30.1 ± 7.3 vs 20.9 ± 5.3; P = 0.002) whereas the CNRl was comparable (17.3 ± 5.6 vs 17.4 ± 4.9; P = 0.91) between the two scans. CONCLUSIONS: The feasibility of 3D FSE for whole-heart black-blood CMR imaging has been demonstrated. Due to their high success rate for segmental assessment, the combination of 3D bSSFP and 3D FSE may be an attractive alternative to gadolinium contrast enhanced morphological CMR in patients with CHD.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca , Cardiopatias Congênitas/diagnóstico por imagem , Coração/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Angiografia por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Vasos Coronários/fisiopatologia , Eletrocardiografia , Estudos de Viabilidade , Feminino , Coração/fisiopatologia , Cardiopatias Congênitas/fisiopatologia , Frequência Cardíaca , Humanos , Masculino , Valor Preditivo dos Testes , Estudos Prospectivos , Circulação Pulmonar , Veias Pulmonares/diagnóstico por imagem , Veias Pulmonares/fisiopatologia , Adulto Jovem
20.
BMC Med Imaging ; 18(1): 36, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326847

RESUMO

BACKGROUND: Dual-phase 3-dimensional whole-heart acquisition allows simultaneous imaging during systole and diastole. Respiratory navigator gating and tracking of the diaphragm is used with limited accuracy. Prolonged scan time is common, and navigation often fails in patients with erratic breathing. Image-navigation (iNAV) tracks movement of the heart itself and is feasible in single phase whole heart imaging. To evaluate its diagnostic ability in congenital heart disease, we sought to apply iNAV to dual-phase sequencing. METHODS: Healthy volunteers and patients with congenital heart disease underwent dual-phase imaging using the conventional diaphragmatic-navigation (dNAV) and iNAV. Acquisition time was recorded and image quality assessed. Sharpness and length of the right coronary (RCA), left anterior descending (LAD), and circumflex (LCx) arteries were measured in both cardiac phases for both approaches. Qualitative and quantitative analyses were performed in a blinded and randomized fashion. RESULTS: In volunteers, there was no significant difference in vessel sharpness between approaches (p > 0.05). In patients, analysis showed equal vessel sharpness for LAD and RCA (p > 0.05). LCx sharpness was greater with dNAV (p < 0.05). Visualized length with iNAV was 0.5 ± 0.4 cm greater than that with dNAV for LCx in diastole (p < 0.05), 1.0 ± 0.3 cm greater than dNAV for LAD in diastole (p < 0.05), and 0.8 ± 0.7 cm greater than dNAV for RCA in systole (p < 0.05). Qualitative scores were similar between modalities (p = 0.71). Mean iNAV scan time was 5:18 ± 2:12 min shorter than mean dNAV scan time in volunteers (p = 0.0001) and 3:16 ± 1:12 min shorter in patients (p = 0.0001). CONCLUSIONS: Image quality of iNAV and dNAV was similar with better distal vessel visualization with iNAV. iNAV acquisition time was significantly shorter. Complete cardiac diagnosis was achieved. Shortened acquisition time will improve clinical applicability and patient comfort.


Assuntos
Cardiopatias Congênitas/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Adolescente , Adulto , Estudos de Casos e Controles , Criança , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...