Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 7(13)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35801586

RESUMO

IL-1 receptor-activated kinase 1 (IRAK1) is involved in signal transduction downstream of many TLRs and the IL-1R. Its potential as a drug target for chronic inflammatory diseases is underappreciated. To study its functional role in joint inflammation, we generated a mouse model expressing a functionally inactive IRAK1 (IRAK1 kinase deficient, IRAK1KD), which also displayed reduced IRAK1 protein expression and cell type-specific deficiencies of TLR signaling. The serum transfer model of arthritis revealed a potentially novel role of IRAK1 for disease development and neutrophil chemoattraction exclusively via its activity in nonhematopoietic cells. Consistently, IRAK1KD synovial fibroblasts showed reduced secretion of neutrophil chemoattractant chemokines following stimulation with IL-1ß or human synovial fluids from patients with rheumatoid arthritis (RA) and gout. Together with patients with RA showing prominent IRAK1 expression in fibroblasts of the synovial lining, these data suggest that targeting IRAK1 may be therapeutically beneficial. As pharmacological inhibition of IRAK1 kinase activity had only mild effects on synovial fibroblasts from mice and patients with RA, targeted degradation of IRAK1 may be the preferred pharmacologic modality. Collectively, these data position IRAK1 as a central regulator of the IL-1ß-dependent local inflammatory milieu of the joints and a potential therapeutic target for inflammatory arthritis.


Assuntos
Artrite Reumatoide , Quinases Associadas a Receptores de Interleucina-1 , Neutrófilos , Membrana Sinovial , Animais , Artrite Reumatoide/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Interleucina-8/metabolismo , Camundongos , Neutrófilos/metabolismo , Membrana Sinovial/metabolismo
2.
J Allergy Clin Immunol ; 145(1): 379-390, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31622687

RESUMO

BACKGROUND: IκBζ plays a key role in psoriasis by mediating IL-17A-driven effects, but the molecular mechanism by which IL-17A regulates IκBζ expression is not clarified. OBJECTIVE: We sought to explore the molecular transformation in patients with psoriasis during anti-IL-17A (secukinumab) treatment with a focus on IκBζ. METHODS: The study was an open-label, single-arm, single-center secukinumab treatment study that included 14 patients with plaque psoriasis. Skin biopsy specimens and blood samples were collected on days 0, 4, 14, 42, and 84 and processed for microarray gene expression analysis. Furthermore, in vitro experiments with human keratinocytes and synovial fibroblasts were conducted. RESULTS: Secukinumab improved clinical scores and histologic psoriasis features. Moreover, secukinumab altered the skin transcriptome. The major transcriptional shift appeared between day 14 and day 42 after treatment initiation, although 80 genes were differentially expressed already at day 4. Expression of nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor (IκB) ζ (NFKBIZ, the gene encoding IκBζ) was reduced already after 4 days of treatment in the skin. NFKBIZ expression correlated to Psoriasis Area and Severity Index score, and NFKBIZ mRNA levels in the skin decreased during anti-IL-17A treatment. Moreover, specific NFKBIZ signature genes were significantly altered during anti-IL-17A treatment. Finally, we identified NF-κB activator 1 (Act1), p38 mitogen-activated protein kinase (MAPK), Jun NH2-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) as key signaling pathways in NFKBIZ/IκBζ regulation. CONCLUSION: Our results define a crucial role for IκBζ in the antipsoriatic effect of secukinumab. Because IκBζ signature genes were regulated already after 4 days of treatment, this strongly indicates that IκBζ plays a crucial role in the antipsoriatic effects mediated by anti-IL-17A treatment.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Anticorpos Monoclonais Humanizados/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Psoríase/tratamento farmacológico , Adulto , Feminino , Fibroblastos/imunologia , Fibroblastos/patologia , Regulação da Expressão Gênica/imunologia , Humanos , Queratinócitos/imunologia , Queratinócitos/patologia , Sistema de Sinalização das MAP Quinases/imunologia , Masculino , Pessoa de Meia-Idade , Psoríase/imunologia , Psoríase/patologia , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...