Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612871

RESUMO

Chronic obstructive pulmonary disease (COPD) patients and smokers have a higher incidence of intestinal disorders. The aim of this study was to gain insight into the transcriptomic changes in the lungs and intestines, and the fecal microbial composition after cigarette smoke exposure. Mice were exposed to cigarette smoke and their lung and ileum tissues were analyzed by RNA sequencing. The top 15 differentially expressed genes were investigated in publicly available gene expression datasets of COPD and Crohn's disease (CD) patients. The murine microbiota composition was determined by 16S rRNA sequencing. Increased expression of MMP12, GPNMB, CTSK, CD68, SPP1, CCL22, and ITGAX was found in the lungs of cigarette smoke-exposed mice and COPD patients. Changes in the intestinal expression of CD79B, PAX5, and FCRLA were observed in the ileum of cigarette smoke-exposed mice and CD patients. Furthermore, inflammatory cytokine profiles and adhesion molecules in both the lungs and intestines of cigarette smoke-exposed mice were profoundly changed. An altered intestinal microbiota composition and a reduction in bacterial diversity was observed in cigarette smoke-exposed mice. Altered gene expression in the murine lung was detected after cigarette smoke exposure, which might simulate COPD-like alterations. The transcriptomic changes in the intestine of cigarette smoke-exposed mice had some similarities with those of CD patients and were associated with changes in the intestinal microbiome. Future research could benefit from investigating the specific mechanisms underlying the observed gene expression changes due to cigarette smoke exposure, focusing on identifying potential therapeutic targets for COPD and CD.


Assuntos
Fumar Cigarros , Doença de Crohn , Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica , Humanos , Animais , Camundongos , Doença de Crohn/genética , Fumar Cigarros/efeitos adversos , RNA Ribossômico 16S , Perfilação da Expressão Gênica , Doença Pulmonar Obstrutiva Crônica/genética , Glicoproteínas de Membrana
2.
Am J Respir Crit Care Med ; 208(11): 1240-1241, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37672769
3.
Eur J Pharmacol ; 958: 176047, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37742814

RESUMO

Uncontrolled inflammation leads to nonspecific destruction and remodeling of tissues and can contribute to many human pathologies, including pulmonary diseases. Stimulation of inflammatory resolution is considered an important process that protects against the progression of chronic inflammatory diseases. Resolvins generated from essential omega-3 polyunsaturated fatty acids have been demonstrated to be signaling molecules in inflammation with important pro-resolving and anti-inflammatory capabilities. By binding to specific receptors, resolvins can modulate inflammatory processes such as neutrophil migration, macrophage phagocytosis and the presence of pro-inflammatory mediators to reduce inflammatory pathologies. The discovery of these pro-resolving mediators has led to a shift in drug research from suppressing pro-inflammatory molecules to investigating compounds that promote resolution to treat inflammation. The exploration of inflammatory resolution also provided the opportunity to further understand the pathophysiology of pulmonary diseases. Alterations of resolution are now linked to both the development and exacerbation of diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, acute respiratory distress syndrome, cancer and COVID-19. These findings have resulted in the rise of novel design and testing of innovative resolution-based therapeutics to treat diseases. Hence, this paper reviews the generation and mechanistic actions of resolvins and investigates their role and therapeutic potential in several pulmonary diseases that may benefit from resolution-based pharmaceuticals.

4.
Am J Respir Crit Care Med ; 207(9): 1145-1160, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36883945

RESUMO

Epidemiological studies indicate that chronic obstructive pulmonary disease (COPD) is associated with the incidence of changes in intestinal health. Cigarette smoking, as one of the major causes of COPD, can have an impact on the gastrointestinal system and promotes intestinal diseases. This points to the existence of gut-lung interactions, but an overview of the underlying mechanisms of the bidirectional connection between the lungs and the gut in COPD is lacking. The interaction between the lungs and the gut can occur through circulating inflammatory cells and mediators. Moreover, gut microbiota dysbiosis, observed in both COPD and intestinal disorders, can lead to a disturbed mucosal environment, including the intestinal barrier and immune system, and hence may negatively affect both the gut and the lungs. Furthermore, systemic hypoxia and oxidative stress that occur in COPD may also be involved in intestinal dysfunction and play a role in the gut-lung axis. In this review, we summarize data from clinical research, animal models, and in vitro studies that may explain the possible mechanisms of gut-lung interactions associated with COPD. Interesting observations on the possibility of promising future add-on therapies for intestinal dysfunction in patients with COPD are highlighted.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Pneumopatias , Doença Pulmonar Obstrutiva Crônica , Animais , Doença Pulmonar Obstrutiva Crônica/etiologia , Pulmão , Pneumopatias/complicações , Sistema Imunitário , Disbiose/complicações
5.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674626

RESUMO

(1) Exposure of intestinal epithelial cells to heat and hypoxia causes a (heat) stress response, resulting in the breakdown of epithelial integrity. There are indications that several categories of nutritional components have beneficial effects on maintaining the intestinal epithelial integrity under stress conditions. This study evaluated the effect of nine nutritional components, including non-digestible oligosaccharides (galacto-oligosaccharides (GOS), fructo-oligosaccharides (FOS), chitosan oligosaccharides (COS)), antioxidants (α-lipoic acid (ALA), resveratrol (RES)), amino acids (l-glutamine (Glu), l-arginine (Arg)) and polyunsaturated fatty acids (PUFAs) (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA)), on heat/hypoxia-induced epithelial injury. (2) Two human colonic cell lines, Caco-2 and HT-29, were co-cultured and pre-treated with the nutritional components for 48 h. After pre-treatment, the cells were exposed to heat/hypoxia (42 °C, 5% O2) for 2 h. Epithelial integrity was evaluated by measuring trans-epithelial electrical resistance (TEER), paracellular Lucifer Yellow (LY) permeability, and tight junction (TJ) protein expression. Heat stress and oxidative stress levels were evaluated by determining heat-shock protein-70 (HSP-70) expression and the concentration of the lipid peroxidation product malondialdehyde (MDA). (3) GOS, FOS, COS, ALA, RES, Arg, and EPA presented protective effects on epithelial damage in heat/hypoxia-exposed Caco-2/HT-29 cells by preventing the decrease in TEER, the increase in LY permeability, and/or decrease in TJ proteins zonula occludens-1 (ZO-1) and claudin-3 expression. COS, RES, and EPA demonstrated anti-oxidative stress effects by suppressing the heat/hypoxia-induced MDA production, while Arg further elevated the heat/hypoxia-induced increase in HSP-70 expression. (4) This study indicates that various nutritional components have the potential to counteract heat/hypoxia-induced intestinal injury and might be interesting candidates for future in vivo studies and clinical trials in gastrointestinal disorders related to heat stress and hypoxia.


Assuntos
Antioxidantes , Mucosa Intestinal , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Mucosa Intestinal/metabolismo , Células CACO-2 , Aminoácidos/farmacologia , Aminoácidos/metabolismo , Células HT29 , Técnicas de Cocultura , Junções Íntimas/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Resveratrol/farmacologia , Proteínas de Junções Íntimas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Arginina/metabolismo , Ácidos Graxos Insaturados/metabolismo , Permeabilidade
6.
Nutrients ; 14(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36364961

RESUMO

The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Junções Íntimas/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/metabolismo , Células Epiteliais , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidade
7.
Cells ; 11(18)2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139468

RESUMO

Chronic obstructive pulmonary disease (COPD), often caused by smoking, is a chronic lung disease with systemic manifestations including metabolic comorbidities. This study investigates adaptive and pathological alterations in adipose and skeletal muscle tissue following cigarette smoke exposure using in vivo and in vitro models. Mice were exposed to cigarette smoke or air for 72 days and the pre-adipose cell line 3T3-L1 was utilized as an in vitro model. Cigarette smoke exposure decreased body weight, and the proportional loss in fat mass was more pronounced than the lean mass loss. Cigarette smoke exposure reduced adipocyte size and increased adipocyte numbers. Adipose macrophage numbers and associated cytokine levels, including interleukin-1ß, interleukine-6 and tumor necrosis factor-α were elevated in smoke-exposed mice. Muscle strength and protein synthesis signaling were decreased after smoke exposure; however, muscle mass was not changed. In vitro studies demonstrated that lipolysis and fatty acid oxidation were upregulated in cigarette smoke-exposed pre-adipocytes. In conclusion, cigarette smoke exposure induces a loss of whole-body fat mass and adipose atrophy, which is likely due to enhanced lipolysis.


Assuntos
Tecido Adiposo , Fumar Cigarros , Músculo Esquelético , Fumaça , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Interleucina-1beta/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Fumaça/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo
8.
Am J Physiol Lung Cell Mol Physiol ; 323(3): L266-L280, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35699290

RESUMO

Chronic obstructive pulmonary disease (COPD) is often associated with intestinal comorbidities. In this study, changes in intestinal homeostasis and immunity in a cigarette smoke (CS)- and lipopolysaccharide (LPS)-induced COPD model were investigated. Mice were exposed to cigarette smoke or air for 72 days, except days 42, 52, and 62 on which the mice were treated with saline or LPS via intratracheal instillation. Cigarette smoke exposure increased the airway inflammatory cell numbers, mucus production, and different inflammatory mediators, including C-reactive protein (CRP) and keratinocyte-derived chemokine (KC), in bronchoalveolar lavage (BAL) fluid and serum. LPS did not further impact airway inflammatory cell numbers or mucus production but decreased inflammatory mediator levels in BAL fluid. T helper (Th) 1 cells were enhanced in the spleen after cigarette smoke exposure; however, in combination with LPS, cigarette exposure caused an increase in Th1 and Th2 cells. Histomorphological changes were observed in the proximal small intestine after cigarette smoke exposure, and addition of LPS had no effect. Cigarette smoke activated the intestinal immune network for IgA production in the distal small intestine that was associated with increased fecal sIgA levels and enlargement of Peyer's patches. Cigarette smoke plus LPS decreased fecal sIgA levels and the size of Peyer's patches. In conclusion, cigarette smoke with or without LPS affects intestinal health as observed by changes in intestinal histomorphology and immune network for IgA production. Elevated systemic mediators might play a role in the lung-gut cross talk. These findings contribute to a better understanding of intestinal disorders related to COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Animais , Líquido da Lavagem Broncoalveolar , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Homeostase , Imunoglobulina A/efeitos adversos , Imunoglobulina A/metabolismo , Imunoglobulina A Secretora/metabolismo , Imunoglobulina A Secretora/farmacologia , Lipopolissacarídeos/efeitos adversos , Pulmão/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Nicotiana
9.
Toxins (Basel) ; 13(3)2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33668708

RESUMO

Enterotoxin-producing bacteria (EPB) have developed multiple mechanisms to disrupt gut homeostasis, and provoke various pathologies. A major part of bacterial cytotoxicity is attributed to the secretion of virulence factors, including enterotoxins. Depending on their structure and mode of action, enterotoxins intrude the intestinal epithelium causing long-term consequences such as hemorrhagic colitis. Multiple non-digestible oligosaccharides (NDOs), and short chain fatty acids (SCFA), as their metabolites produced by the gut microbiota, interact with enteropathogens and their toxins, which may result in the inhibition of the bacterial pathogenicity. NDOs characterized by diverse structural characteristics, block the pathogenicity of EPB either directly, by inhibiting bacterial adherence and growth, or biofilm formation or indirectly, by promoting gut microbiota. Apart from these abilities, NDOs and SCFA can interact with enterotoxins and reduce their cytotoxicity. These anti-virulent effects mostly rely on their ability to mimic the structure of toxin receptors and thus inhibiting toxin adherence to host cells. This review focuses on the strategies of EPB and related enterotoxins to impair host cell immunity, discusses the anti-pathogenic properties of NDOs and SCFA on EPB functions and provides insight into the potential use of NDOs and SCFA as effective agents to fight against enterotoxins.


Assuntos
Bactérias/metabolismo , Infecções Bacterianas/dietoterapia , Carboidratos da Dieta/administração & dosagem , Enterotoxinas/metabolismo , Ácidos Graxos/administração & dosagem , Oligossacarídeos/administração & dosagem , Animais , Bactérias/patogenicidade , Infecções Bacterianas/metabolismo , Infecções Bacterianas/microbiologia , Carboidratos da Dieta/metabolismo , Digestão , Ácidos Graxos/metabolismo , Microbioma Gastrointestinal , Interações Hospedeiro-Patógeno , Humanos , Oligossacarídeos/metabolismo , Virulência
10.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671042

RESUMO

Short-chain fatty acids (e.g., butyrate and propionate) are able to diminish endothelial cell activation. The aim of this study was to investigate whether intracellular IL-33 mediates the effects of butyrate and propionate on TNFα-induced IL-8 production and vascular cell adhesion molecule-1 (VCAM-1) expression. In addition, it was investigated whether regulating NF-κB and MAPK signaling pathways are involved. Intracellular IL-33 was measured in human endothelial cells (HUVECs) pre-incubated for 24 h with butyrate (0.1 mM or 5 mM), propionate (0.3 mM or 10 mM), or trichostatin A (TSA, 0.5 µM) prior to TNFα (1 ng/mL) stimulation (24 h). The effects of butyrate, propionate, and TSA on TNFα-induced IL-8, vascular cell adhesion molecule-1 (VCAM-1), NF-κB, and MAPK signaling pathways in normal HUVECs and IL-33 siRNA (siIL-33)-transfected HUVECs were compared to study the role of IL-33 in the protective effects of butyrate and propionate. Endogenous IL-33 was highly expressed in the perinuclear in HUVECs, which was significantly reduced by TNFα stimulation. The TNFα-induced reduction in IL-33 was prevented by pre-incubation with butyrate or propionate. Butyrate (0.1 mM), propionate (0.3 mM), and TSA inhibited the IL-8 production and activation of NF-κB. Interestingly, this effect was not observed in siIL-33-transfected HUVECs. The effects of butyrate (5 mM), propionate (10 mM), and TSA (0.5 µM) on VCAM-1 expression and activation of MAPK signaling pathways were not affected by siIL-33 transfection. In conclusion, we showed that the inhibitory effects of butyrate and propionate on TNFα-induced IL-8 production were mediated by the HDACs/IL-33/NF-κB pathway, while their effects on VCAM-1 expression might be associated with the HDACs/MAPK signaling pathway, independently of IL-33.


Assuntos
Anti-Inflamatórios/farmacologia , Butiratos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Interleucina-33/metabolismo , Propionatos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Histona Desacetilases/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/metabolismo
11.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374733

RESUMO

Barrier dysfunction of airway epithelium contributes to the development of allergies, airway hyper-responsiveness and immunological respiratory diseases. Short-chain fatty acids (SCFA) enhance and restore the barrier function of the intestinal epithelium. This study investigated whether acetate, propionate and butyrate enhance the integrity of bronchial epithelial cells. Differentiating human bronchial epithelial cells (16HBE) grown on transwells were exposed to butyrate, propionate and acetate while trans-epithelial electrical resistance was monitored over time. Restorative effects of SCFA were investigated by subsequent incubation of cells with IL-4, IL-13 or house dust mite extract and SCFA. SCFA effects on IL-4-induced cytokine production and the expression of zonula occludens-1 (ZO-1) and Mitogen-activated protein kinases (MAPK) signalling pathways were investigated by ELISA and Western blot assays. Propionate and butyrate enhanced the barrier function of differentiating 16HBE cells and induced complete recovery of the barrier function after exposure to the above-mentioned stimuli. Butyrate decreased IL-4-induced IL-6 production. IL-4 decreased ZO-1 protein expression and induced phosphorylation of extracellular signal-regulated protein kinases 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK) in 16HBE cells, both of which could be restored by SCFA. SCFA showed prophylactic and restorative effects on airway epithelial barrier function, which might be induced by increased ZO-1 expression.


Assuntos
Butiratos/farmacologia , Citocinas/metabolismo , Propionatos/farmacologia , Pyroglyphidae/imunologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Animais , Biomarcadores , Suscetibilidade a Doenças , Células Epiteliais/metabolismo , Ácidos Graxos Voláteis/metabolismo , Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Mucosa Respiratória/patologia , Fatores de Tempo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo
12.
Nutrients ; 12(6)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560186

RESUMO

Non-digestible oligosaccharides (NDOs), complex carbohydrates that resist hydrolysis by salivary and intestinal digestive enzymes, fulfill a diversity of important biological roles. A lot of NDOs are known for their prebiotic properties by stimulating beneficial bacteria in the intestinal microbiota. Human milk oligosaccharides (HMOs) represent the first prebiotics that humans encounter in life. Inspired by these HMO structures, chemically-produced NDO structures (e.g., galacto-oligosaccharides and chito-oligosaccharides) have been recognized as valuable food additives and exert promising health effects. Besides their apparent ability to stimulate beneficial microbial species, oligosaccharides have shown to be important inhibitors of the development of pathogenic infections. Depending on the type and structural characteristics, oligosaccharides can exert a number of anti-pathogenic effects. The most described effect is their ability to act as a decoy receptor, thereby inhibiting adhesion of pathogens. Other ways of pathogenic inhibition, such as interference with pathogenic cell membrane and biofilm integrity and DNA transcription, are less investigated, but could be equally impactful. In this review, a comprehensive overview of In vitro anti-pathogenic properties of different NDOs and associated pathways are discussed. A framework is created categorizing all anti-pathogenic effects and providing insight into structural necessities for an oligosaccharide to exert one of these effects.


Assuntos
Anti-Infecciosos/farmacologia , Oligossacarídeos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Quitosana , Digestão , Galactose , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Humanos , Leite Humano/química , Oligossacarídeos/química , Oligossacarídeos/fisiologia , Prebióticos/administração & dosagem
13.
Front Pharmacol ; 9: 533, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875665

RESUMO

Background and Aim: Previously, we found that short chain fatty acids (SCFA) inhibit LPS or TNFα-induced endothelial inflammatory responses and excessive vascular cell adhesion molecule-1 (VCAM-1) expression, two important steps in the development of atherosclerosis. However, the mechanisms involved are still unclear. We hypothesized that the effects of SCFA are associated with activation of G-protein coupled receptor 41/43 (GPR41/43) and/or inhibition of histone deacetylases (HDACs). Methods: The expression and location of GPR41/43 and HDAC3 in human umbilical vein endothelial cells (HUVEC) were confirmed. HUVEC were pre-incubated with acetate, butyrate or propionate alone or in combination with GLPG0974 (GLPG, antagonist of GPR43) or ß-hydroxybutyrate (SHB, antagonist of GPR41) and then exposed to LPS or TNFα. Interleukin (IL)-6 and IL-8 levels and VCAM-1 expression were measured. HDAC activity was measured after treatment with butyrate, propionate and trichostatin A (TSA, HDAC inhibitor). The peripheral blood mononuclear cell (PBMC) adhesive level was also determined after TSA treatment. Results: GPR41/43 were expressed on the membrane of HUVEC and HDAC3 was located in cytoplasm and nucleus. The GLPG and/or SHB treatments restored the inhibitory effects of acetate on IL-6 and IL-8 production and the inhibitory effects of butyrate or propionate on IL-6 production, but not on IL-8. In contrast, GLPG and/or SHB treatments did not affect the inhibitory effects of butyrate or propionate on TNFα-induced VCAM-1 expression. TSA showed similar effects on IL-8 production and VCAM-1 expression as butyrate and propionate. In addition, TSA significantly inhibited the adhesion of PBMC to an endothelial monolayer. Conclusion: Activation of GPR41/43 mediates the effects of acetate on IL-6 and IL-8 production and the effects of butyrate and propionate on IL-6 production. Furthermore, inhibition of HDACs mediates the effects of butyrate and propionate on IL-8 production, VCAM-1 expression, and PBMC adhesion to an endothelial monolayer. These data indicate the beneficial roles of SCFA in preventing vascular inflammation and relevant diseases by activation of GPR41/43 and inhibition of HDACs.

14.
Eur J Pharmacol ; 831: 52-59, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29750914

RESUMO

In the gastro-intestinal tract, short chain fatty acids (SCFAs) have protective effects on epithelial cells. However, their effects on inflammatory cytokine production by endothelial and immune cells and the recruitment of immune cells and their trans-migration across the endothelial layer remain controversial. Both cell types are associated with the initiation and development of inflammatory diseases, such as atherosclerosis and sepsis. SCFAs modulate immune and inflammatory responses via activation of free fatty acid (FFA) receptors type 2 and 3 (FFA2 and FFA3 receptors), G protein-coupled receptor 109A (GPR109A) and inhibition of histone deacetylases (HDACs). This review will focus on the effects of SCFAs on lipopolysaccharide (LPS)- or tumor necrosis factor-alpha (TNFα)-induced inflammatory response on endothelial and immune cells function, and an overview is presented on the underlying mechanisms of the effects of SCFAs on both immune and endothelial cells, including HDACs, FFA2 and FFA3 receptors and GPR109A regulation of nuclear factor-kappa B (NF-κB) activation and mitogen-activated protein kinase (MAPK) signaling pathways.


Assuntos
Anti-Inflamatórios/farmacologia , Células Endoteliais/efeitos dos fármacos , Ácidos Graxos Voláteis/farmacologia , Sistema Imunitário/efeitos dos fármacos , Inflamação/tratamento farmacológico , Animais , Anti-Inflamatórios/toxicidade , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Ácidos Graxos Voláteis/toxicidade , Inibidores de Histona Desacetilases/farmacologia , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Inflamação/induzido quimicamente , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
Front Pharmacol ; 9: 233, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615908

RESUMO

Background and Aim: Endothelial activation is characterized by excessive production of cytokines and chemokines as well as adhesion molecules expression which is involved in the development of atherosclerosis. The aim of our study is to investigate the effects of short chain fatty acids (SCFA) on lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNFα)-induced endothelial activation. Methods and Results: Human umbilical vein endothelial cells (HUVEC) were pre-treated with acetate (10 mM), butyrate (0.1 mM) or propionate (0.3 mM) for 1, 16, or 24 h and then stimulated with LPS (1 or 10 µg/ml) or TNFα (100 pg/ml or 1 ng/ml) for 6, 12, or 24 h. Cytokines in the supernatant were measured by ELISA. HUVEC were pre-treated with acetate (10 mM), butyrate (5 mM) or propionate (10 mM) for 24 h and then stimulated with LPS (1 µg/ml) or TNFα (1 ng/ml) for 8 h. The expression of the adhesion molecules intracellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was detected by flow cytometry. The human blood mononuclear cell adhesive level to HUVEC monolayer was measured. LPS and TNFα induced a significant increase in the release of interleukin-6 (IL-6) and IL-8. Acetate, butyrate and propionate reduced IL-6 and IL-8 levels and the magnitude was dependent on the incubation times. LPS or TNFα increased ICAM-1 and VCAM-1 expression. Pre-incubation with acetate had no effect. In contrast, butyrate and propionate decreased VCAM-1 expression in TNFα stimulated cells but showed no effects on ICAM-1 expression. Butyrate significantly inhibited the adhesion of mononuclear cells to an endothelial monolayer and propionate was less effective. Conclusion: SCFA, including acetate, butyrate and propionate, influenced LPS- or TNFα-induced endothelial activation by inhibiting the production of IL-6 and IL-8, and reducing the expression of VCAM-1 and subsequent cell adhesion. Results were dependent on the concentrations and pre-incubation time of each SCFA and stimulation time of LPS or TNFα.

16.
Front Pharmacol ; 5: 190, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161620

RESUMO

In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anesthetized animals) in both mild and severe allergic airway inflammation models. Mild inflammation was induced by intraperitoneal sensitization and aerosols of ovalbumin. Severe inflammation was induced by intraperitoneal sensitization using trinitrophenyl-ovalbumin, followed by intranasal challenges with IgE-allergen complexes. A significant increase in airway responsiveness to methacholine was observed in the mild inflammation group when RL was measured. Significant changes in both RL and Penh were observed in the severe inflammation groups. There was a significant increase in the number of inflammatory cells in the Broncho-Alveolar Lavage Fluid (BALF) in both the mild and severe inflammation animals. The enforced ventilation of the animals during the RL measurement further increased the number of cells in the BALF. IL-2 and RANTES levels in the BALF were higher in the severe inflammation groups compared to the mild inflammation groups. Penh gave only reliable measurements during severe airway inflammation. Measuring RL gave consistent results in both mild and severe allergic airway inflammation models however, ventilation induced an additional cell influx into the airways.

17.
Gut ; 63(4): 578-87, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23525573

RESUMO

OBJECTIVE: Proline-glycine-proline (PGP) has been shown to have chemotactic effects on neutrophils via CXCR2 in several lung diseases. PGP is derived from collagen by the combined action of matrix metalloproteinase (MMP) 8 and/or MMP9 and prolyl endopeptidase (PE). We investigated the role of PGP in inflammatory bowel disease (IBD). DESIGN: In intestinal tissue from patients with IBD and mice with dextran sodium sulfate (DSS)-induced colitis, MMP8, MMP9 and PE were evaluated by ELISA, immunoblot and immunohistochemistry. Peripheral blood polymorphonuclear cell (PMN) supernatants were also analysed accordingly and incubated with collagen to assess PGP generation ex vivo. PGP levels were measured by mass spectrometry, and PGP neutralisation was achieved with a PGP antagonist and PGP antibodies. RESULTS: In the intestine of patients with IBD, MMP8 and MMP9 levels were elevated, while PE was expressed at similar levels to control tissue. PGP levels were increased in intestinal tissue of patients with IBD. Similar results were obtained in intestine from DSS-treated mice. PMN supernatants from patients with IBD were far more capable of generating PGP from collagen ex vivo than healthy controls. Furthermore, PGP neutralisation during DSS-induced colitis led to a significant reduction in neutrophil infiltration in the intestine. CONCLUSIONS: The proteolytic cascade that generates PGP from collagen, as well as the tripeptide itself, is present in the intestine of patients with IBD and mice with DSS-induced colitis. PGP neutralisation in DSS-treated mice showed the importance of PGP-guided neutrophilic infiltration in the intestine and indicates a vicious circle in neutrophilic inflammation in IBD.


Assuntos
Colágeno/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Infiltração de Neutrófilos/fisiologia , Adolescente , Adulto , Idoso , Animais , Criança , Modelos Animais de Doenças , Feminino , Humanos , Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/metabolismo , Intestinos/enzimologia , Intestinos/fisiopatologia , Masculino , Metaloproteinase 8 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Prolil Oligopeptidases , Serina Endopeptidases/metabolismo , Adulto Jovem
18.
PLoS One ; 8(1): e55612, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383243

RESUMO

BACKGROUND: Cigarette smoking induces inflammatory responses in all smokers and is the major risk factor for lung disease such as chronic obstructive pulmonary disease (COPD). In this progressive disease, chronic inflammation in the lung contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated Proline-Glycine-Proline (N-ac-PGP). The generation of this tripeptide is mediated by a multistep pathway involving matrix metalloproteases (MMPs) 8 and 9 and prolyl endopeptidase (PE). Here we investigated whether cigarette smoke extract (CSE) stimulates human PMNs to breakdown whole matrix collagen leading to the generation of the chemotactic collagen fragment N-ac-PGP. METHODOLOGY/PRINCIPAL FINDINGS: Incubating PMNs with CSE led to the release of chemo-attractant CXCL8 and proteases MMP8 and MMP9. PMNs constitutively expressed PE activity as well as PE protein. Incubating CSE-primed PMNs with collagen resulted in collagen breakdown and in N-ac-PGP generation. Incubation of PMNs with the tripeptide N-ac-PGP resulted in the release of CXCL8, MMP8 and MMP9. Moreover, we tested whether PMNs from COPD patients are different from PMNs from healthy donors. Here we show that the intracellular basal PE activity of PMNs from COPD patients increased 25-fold compared to PMNs from healthy donors. Immunohistological staining of human lung tissue for PE showed that besides neutrophils, macrophages and epithelial cells express PE. CONCLUSIONS: This study indicates that neutrophils activated by cigarette smoke extract can breakdown collagen into N-ac-PGP and that this collagen fragment itself can activate neutrophils, which may lead in vivo to a self-propagating cycle of neutrophil infiltration, chronic inflammation and lung emphysema. MMP-, PE- or PGP-inhibitors can serve as an attractive therapeutic target and may open new avenues towards effective treatment of COPD.


Assuntos
Colágeno/imunologia , Inflamação/imunologia , Inflamação/patologia , Neutrófilos/imunologia , Fumar/efeitos adversos , Idoso , Estudos de Casos e Controles , Sobrevivência Celular/efeitos dos fármacos , Colágeno/metabolismo , Colágeno Tipo I/imunologia , Colágeno Tipo I/metabolismo , Feminino , Humanos , Interleucina-8/biossíntese , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Masculino , Metaloproteinase 8 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/biossíntese , Pessoa de Meia-Idade , Oligopeptídeos/biossíntese , Oligopeptídeos/farmacologia , Prolina/análogos & derivados , Prolina/biossíntese , Prolina/farmacologia , Prolil Oligopeptidases , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/patologia , Serina Endopeptidases/metabolismo , Produtos do Tabaco/efeitos adversos
19.
Biochim Biophys Acta ; 1830(1): 2188-93, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23041749

RESUMO

BACKGROUND: Chronic inflammation in lung diseases contributes to lung tissue destruction leading to the formation of chemotactic collagen fragments such as N-acetylated proline-glycine-proline (N-ac-PGP). In the current study, we investigate whether N-ac-PGP influences ß(2)-integrin activation and function in neutrophilic firm adhesion to endothelium. METHODS: Human polymorphonuclear leukocytes (PMNs) were isolated from fresh human blood. Subsequently, a transmigration assay was performed to evaluate the active migration of PMNs towards N-ac-PGP. Furthermore, the effect of the tripeptide on ß(2)-integrin activation was assessed by performing the adhesion assay using fibrinogen as a ligand. To determine whether this effect was due to conformational change of ß(2)-integrins, antibodies against CD11b and CD18 were used in the adhesion assay and the expression pattern of CD11b was determined. RESULTS: Human neutrophils transmigrated through an endothelial cell layer in response to basolateral N-ac-PGP. N-ac-PGP induced also a neutrophil adherence to fibrinogen. Using functional blocking antibodies against CD11b and CD18, it was demonstrated that CD11b/CD18 (Mac-1) was responsible for the N-ac-PGP-induced firm adhesion of neutrophils to fibrinogen. Pertussis toxin decreased the Mac-1 activation indicating the involvement of G-proteins. N-ac-PGP most likely activated Mac-1 by initiating a conformational change, since the expression pattern of Mac-1 on the cell surface did not change significantly. CONCLUSIONS: Chemo-attractant N-acetyl proline-glycine-proline induces CD11b/CD18-dependent neutrophil adhesion. GENERAL SIGNIFICANCE: This is the first study to describe that the chemo-attractant N-ac-PGP also activates Mac-1 on the surface of neutrophils, which can additionally contribute to neutrophilic transmigration into the lung tissue during lung inflammation.


Assuntos
Antígeno CD11b/metabolismo , Antígenos CD18/metabolismo , Fatores Quimiotáticos/farmacologia , Neutrófilos/metabolismo , Oligopeptídeos/farmacologia , Adesão Celular/efeitos dos fármacos , Feminino , Fibrinogênio/química , Fibrinogênio/metabolismo , Humanos , Masculino , Infiltração de Neutrófilos , Pneumonia/metabolismo , Migração Transendotelial e Transepitelial
20.
Am J Respir Crit Care Med ; 185(8): 817-24, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22227380

RESUMO

RATIONALE: Neutrophils are key players in chronic obstructive pulmonary disease (COPD), and increased numbers of neutrophils are present in sputum and lung tissue of patients with COPD. Interestingly, immunoglobulin free light chains (IgLC) are able to prolong the life of neutrophils; therefore, IgLC may contribute to the chronic state of inflammation. OBJECTIVES: In this study, the relation between IgLC and COPD has been investigated. METHODS: We investigated the presence of IgLC in different murine lung emphysema models. IgLC levels in serum from mice and patients with COPD were examined by Western blot analysis and ELISA, respectively. IgLC levels in lung tissue were determined by immunohistochemistry. Fluorescence-activated cell sorter and immunofluorescent analysis were used to detect binding between IgLC and human neutrophils. Interleukin-8 (CXCL8) release by neutrophils after IgLC incubation was measured by ELISA. The effect of F991, an IgLC antagonist, was examined on the neutrophil influx in murine lungs after 5 days of smoke exposure. MEASUREMENTS AND MAIN RESULTS: Increased levels of IgLC in serum of cigarette smoke-exposed and cigarette smoke extract-treated mice compared with control mice were observed. Patients with COPD showed increased serum IgLC and expression of IgLC in lung tissue compared with healthy volunteers. Interestingly, IgLC bound to neutrophils and activated neutrophils to release CXCL8. F991 inhibited the IgLC binding to neutrophils and reduced the smoke-induced neutrophil influx in murine lungs after smoke exposure. CONCLUSIONS: This study describes for the first time an association between neutrophils and IgLC in the pathophysiology of COPD, which could open new avenues to targeted treatment of this chronic disease.


Assuntos
Cadeias Leves de Imunoglobulina/metabolismo , Neutrófilos/metabolismo , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fumar/efeitos adversos , Idoso , Animais , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Humanos , Contagem de Leucócitos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Análise Multivariada , Ativação de Neutrófilo , Neutrófilos/efeitos dos fármacos , Distribuição Aleatória , Estudos de Amostragem , Fumaça/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...