Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2313: 241-258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34478142

RESUMO

In this method chapter, we provide a brief overview of the key methods available to measure self-association of monoclonal antibodies (mAbs) and explain for which experimental throughputs they are usually applied. We then focus on dynamic light scattering (DLS) and describe experimental details on how to measure the diffusion interaction parameter (kD) which is occasionally referred to as the gold standard for measuring self-association of proteins. The kD is a well-established parameter to predict solution viscosity, which is one of the most critical developability parameters of mAbs. Finally, we present a pH and excipient screen that is designed to measure self-association with DLS under conditions that are relevant for bioprocessing and formulation of mAbs. The presented light scattering methods are well suited for lead candidate selections where it is essential to select mAbs with high developability potential for progression toward first human dose.


Assuntos
Anticorpos Monoclonais , Luz , Difusão , Difusão Dinâmica da Luz , Humanos , Espalhamento de Radiação , Viscosidade
2.
Blood ; 138(14): 1258-1268, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34077951

RESUMO

Hemophilia A is a bleeding disorder resulting from deficient factor VIII (FVIII), which normally functions as a cofactor to activated factor IX (FIXa) that facilitates activation of factor X (FX). To mimic this property in a bispecific antibody format, a screening was conducted to identify functional pairs of anti-FIXa and anti-FX antibodies, followed by optimization of functional and biophysical properties. The resulting bispecific antibody (Mim8) assembled efficiently with FIXa and FX on membranes, and supported activation with an apparent equilibrium dissociation constant of 16 nM. Binding affinity with FIXa and FX in solution was much lower, with equilibrium dissociation constant values for FIXa and FX of 2.3 and 1.5 µM, respectively. In addition, the activity of Mim8 was dependent on stimulatory activity contributed by the anti-FIXa arm, which enhanced the proteolytic activity of FIXa by 4 orders of magnitude. In hemophilia A plasma and whole blood, Mim8 normalized thrombin generation and clot formation, with potencies 13 and 18 times higher than a sequence-identical analogue of emicizumab. A similar potency difference was observed in a tail vein transection model in hemophilia A mice, whereas reduction of bleeding in a severe tail-clip model was observed only for Mim8. Furthermore, the pharmacokinetic parameters of Mim8 were investigated and a half-life of 14 days shown in cynomolgus monkeys. In conclusion, Mim8 is an activated FVIII mimetic with a potent and efficacious hemostatic effect based on preclinical data.


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Hemofilia A/tratamento farmacológico , Hemorragia/tratamento farmacológico , Animais , Fator IXa/antagonistas & inibidores , Fator VIIIa/uso terapêutico , Fator X/antagonistas & inibidores , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL
3.
J Pharm Sci ; 105(11): 3366-3375, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27663383

RESUMO

Nanoparticle tracking analysis (NTA) has attracted great interest for application in the field of submicron particle characterization for biopharmaceuticals. It has the virtue of direct sample visualization and particle-by-particle tracking, but the complexity of method development has limited its routine applicability. We systematically evaluated data collection and processing parameters as well as sample handling methods using shake-stressed protein samples. The camera shutter and gain were identified as the key factors influencing NTA results. We also demonstrated that sample filtration was necessary for NTA analysis if there were high numbers of micron particles, whereas the choice of filter membrane was critical for data quality. Sample dilution into corresponding formulation buffer did not affect particle size distributions in our study. Finally, NTA analysis exhibited excellent repeatability in intraday comparison of multiple measurements on the same sample and interday comparison on different batches of samples. Shaking-induced protein aggregation could also be sensitively monitored by NTA. In conclusion, NTA analysis can be used as a robust stability-indicating method for the characterization of proteinaceous submicron particles and thereby complement other analytical methods, provided that consistent sample handling and parametric settings are established for the specific case study.


Assuntos
Química Farmacêutica/métodos , Imunoglobulina G/química , Nanopartículas/química , Tamanho da Partícula , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Avaliação Pré-Clínica de Medicamentos/métodos , Imunoglobulina G/análise , Nanopartículas/análise , Proteínas/análise , Proteínas/química
4.
Cell Mol Life Sci ; 73(14): 2619-41, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27137180

RESUMO

α-Glucan debranching enzymes hydrolyse α-1,6-linkages in starch/glycogen, thereby, playing a central role in energy metabolism in all living organisms. They belong to glycoside hydrolase families GH13 and GH57 and several of these enzymes are industrially important. Nine GH13 subfamilies include α-glucan debranching enzymes; isoamylase and glycogen debranching enzymes (GH13_11); pullulanase type I/limit dextrinase (GH13_12-14); pullulan hydrolase (GH13_20); bifunctional glycogen debranching enzyme (GH13_25); oligo-1 and glucan-1,6-α-glucosidases (GH13_31); pullulanase type II (GH13_39); and α-amylase domains (GH13_41) in two-domain amylase-pullulanases. GH57 harbours type II pullulanases. Specificity differences, domain organisation, carbohydrate binding modules, sequence motifs, three-dimensional structures and specificity determinants are discussed. The phylogenetic analysis indicated that GH13_39 enzymes could represent a "missing link" between the strictly α-1,6-specific debranching enzymes and the enzymes with dual specificity and α-1,4-linkage preference.


Assuntos
Glucanos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Glicogênio/metabolismo , Indústrias , Homologia Estrutural de Proteína
5.
Biochim Biophys Acta ; 1864(8): 974-82, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26876537

RESUMO

Thioredoxins are nearly ubiquitous disulfide reductases involved in a wide range of biochemical pathways in various biological systems, and also implicated in numerous biotechnological applications. Plants uniquely synthesize an array of thioredoxins targeted to different cell compartments, for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses on occurrence, reaction mechanisms, specificity, target protein identification, three-dimensional structure and various applications. The aim is to provide a general background as well as an update covering the most recent findings. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.


Assuntos
Germinação/fisiologia , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Sementes/metabolismo , Tiorredoxina h/metabolismo , NADP/metabolismo , Oxirredução , Tiorredoxina Dissulfeto Redutase/metabolismo
6.
J Biol Chem ; 290(20): 12614-29, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25792743

RESUMO

Molecular details underlying regulation of starch mobilization in cereal seed endosperm remain unknown despite the paramount role of this process in plant growth. The structure of the complex between the starch debranching enzyme barley limit dextrinase (LD), hydrolyzing α-1,6-glucosidic linkages, and its endogenous inhibitor (LDI) was solved at 2.7 Å. The structure reveals an entirely new and unexpected binding mode of LDI as compared with previously solved complex structures of related cereal type family inhibitors (CTIs) bound to glycoside hydrolases but is structurally analogous to binding of dual specificity CTIs to proteases. Site-directed mutagenesis establishes that a hydrophobic cluster flanked by ionic interactions in the protein-protein interface is vital for the picomolar affinity of LDI to LD as assessed by analysis of binding by using surface plasmon resonance and also supported by LDI inhibition of the enzyme activity. A phylogenetic analysis identified four LDI-like proteins in cereals among the 45 sequences from monocot databases that could be classified as unique CTI sequences. The unprecedented binding mechanism shown here for LDI has likely evolved in cereals from a need for effective inhibition of debranching enzymes having characteristic open active site architecture. The findings give a mechanistic rationale for the potency of LD activity regulation and provide a molecular understanding of the debranching events associated with optimal starch mobilization and utilization during germination. This study unveils a hitherto not recognized structural basis for the features endowing diversity to CTIs.


Assuntos
Inibidores Enzimáticos/química , Glicosídeo Hidrolases/química , Hordeum/enzimologia , Proteínas de Plantas/química , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Germinação/fisiologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hordeum/genética , Mutagênese Sítio-Dirigida , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/química , Amido/genética , Amido/metabolismo , Relação Estrutura-Atividade
7.
J Mol Biol ; 427(6 Pt B): 1263-1277, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25562209

RESUMO

Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that confine high activity of LD to branched maltooligosaccharides. For the first time, an intact α-1,6-glucosidically linked substrate spanning the active site of a LD or pullulanase has been trapped and characterized by crystallography. The crystal structure reveals both the branch and main-chain binding sites and is used to suggest a mechanism for nucleophilicity enhancement in the active site. The substrate, product and analogue complexes were further used to outline substrate binding subsites and substrate binding restraints and to suggest a mechanism for avoidance of dual α-1,6- and α-1,4-hydrolytic activity likely to be a biological necessity during starch synthesis.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Hordeum/enzimologia , Maltose/metabolismo , Oligossacarídeos/metabolismo , Amido/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Hidrólise , Modelos Moleculares , Conformação Proteica , Amido/química , Especificidade por Substrato
8.
J Biol Chem ; 289(33): 22991-23003, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24993830

RESUMO

The starch debranching enzymes isoamylase 1 and 2 (ISA1 and ISA2) are known to exist in a large complex and are involved in the biosynthesis and crystallization of starch. It is suggested that the function of the complex is to remove misplaced branches of growing amylopectin molecules, which would otherwise prevent the association and crystallization of adjacent linear chains. Here, we investigate the function of ISA1 and ISA2 from starch producing alga Chlamydomonas. Through complementation studies, we confirm that the STA8 locus encodes for ISA2 and sta8 mutants lack the ISA1·ISA2 heteromeric complex. However, mutants retain a functional dimeric ISA1 that is able to partly sustain starch synthesis in vivo. To better characterize ISA1, we have overexpressed and purified ISA1 from Chlamydomonas reinhardtii (CrISA1) and solved the crystal structure to 2.3 Å and in complex with maltoheptaose to 2.4 Å. Analysis of the homodimeric CrISA1 structure reveals a unique elongated structure with monomers connected end-to-end. The crystal complex reveals details about the mechanism of branch binding that explains the low activity of CrISA1 toward tightly spaced branches and reveals the presence of additional secondary surface carbohydrate binding sites.


Assuntos
Chlamydomonas reinhardtii/enzimologia , Glucanos/química , Isoamilase/química , Proteínas de Plantas/química , Cristalografia por Raios X , Estrutura Terciária de Proteína
9.
Proteins ; 82(4): 607-19, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24123219

RESUMO

The ubiquitous disulfide reductase thioredoxin (Trx) regulates several important biological processes such as seed germination in plants. Oxidized cytosolic Trx is regenerated by nicotinamide adenine dinucleotide phosphate (NADPH)-dependent thioredoxin reductase (NTR) in a multistep transfer of reducing equivalents from NADPH to Trx via a tightly NTR-bound flavin. Here, interactions between NTR and Trx are predicted by molecular modelling of the barley NTR:Trx complex (HvNTR2:HvTrxh2) and probed by site directed mutagenesis. Enzyme kinetics analysis reveals mutants in a loop of the flavin adenine dinucleotide (FAD)-binding domain of HvNTR2 to strongly affect the interaction with Trx. In particular, Trp42 and Met43 play key roles for recognition of the endogenous HvTrxh2. Trx from Arabidopsis thaliana is also efficiently recycled by HvNTR2 but turnover in this case appears to be less dependent on these two residues, suggesting a distinct mode for NTR:Trx recognition. Comparison between the HvNTR2:HvTrxh2 model and the crystal structure of the Escherichia coli NTR:Trx complex reveals major differences in interactions involving the FAD- and NADPH-binding domains as supported by our experiments. Overall, the findings suggest that NTR:Trx interactions in different biological systems are fine-tuned by multiple intermolecular contacts.


Assuntos
Arabidopsis/enzimologia , Escherichia coli/enzimologia , Hordeum/enzimologia , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , NADP/química , Conformação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência
10.
Anal Biochem ; 449: 45-51, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24333247

RESUMO

A new chromogenic substrate to assay the starch debranching enzymes limit dextrinase and pullulanase is described. The 2-chloro-4-nitrophenyl glycoside of a commercially available branched heptasaccharide (Glc-maltotriosyl-maltotriose) was found to be a suitable specific substrate for starch debranching enzymes and allows convenient assays of enzymatic activities in a format suited for high-throughput analysis. The kinetic parameters of these enzymes toward the synthesized substrate are determined, and the selectivity of the substrate in a complex cereal-based extract is established.


Assuntos
Ensaios Enzimáticos/métodos , Glicosídeo Hidrolases/metabolismo , Hordeum/enzimologia , Glicosídeos/metabolismo , Hordeum/metabolismo , Cinética , Nitrofenóis/metabolismo , Amido/metabolismo , Especificidade por Substrato
11.
Front Plant Sci ; 4: 151, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734159

RESUMO

Thioredoxin (Trx) reduces disulfide bonds and play numerous important functions in plants. In cereal seeds, cytosolic h-type Trx facilitates the release of energy reserves during the germination process and is recycled by NADPH-dependent Trx reductase. This review presents a summary of the research conducted during the last 10 years to elucidate the structure and function of the barley seed Trx system at the molecular level combined with proteomic approaches to identify target proteins.

12.
FEBS J ; 280(4): 1073-83, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23281814

RESUMO

UNLABELLED: The mechanism of yeast flocculation is generally considered to be mediated through the interaction of cell surface flocculins and mannan carbohydrates. In the present study, the crystal structure of the soluble 25-kDa lectin domain of flocculin 1 from brewer's yeast (Lg-Flo1p) was resolved to 2.5 Å, and its binding specificity towards oligosaccharides was investigated by fluorescence spectroscopy. Lg-Flo1p displays broad specificity towards sugars and has a 14-fold higher affinity for mannose 1-phosphate and glucose 1-phosphate compared to their unphosphorylated counterparts. Based on the results of a structural analysis, we propose that this higher affinity is the result of a charge interaction with a lysine residue in a carbohydrate-binding loop region, NAKAL, unique to NewFlo type flocculins. This raises the possibility of a unique mechanism of flocculation in NewFlo type yeast, which recognizes phosphorylated cell surface mannans. DATABASE: Structural data have been deposited in the Protein Data Bank under accession number 4GQ7.


Assuntos
Proteínas Fúngicas/química , Lectinas de Ligação a Manose/química , Manosefosfatos/química , Saccharomyces , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/química , Sequência Conservada , Cristalografia por Raios X , Floculação , Glucofosfatos/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Concentração Osmolar , Ligação Proteica , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína , Especificidade por Substrato , Propriedades de Superfície
13.
BMC Plant Biol ; 12: 223, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23171412

RESUMO

BACKGROUND: Starch is stored in higher plants as granules composed of semi-crystalline amylopectin and amorphous amylose. Starch granules provide energy for the plant during dark periods and for germination of seeds and tubers. Dietary starch is also a highly glycemic carbohydrate being degraded to glucose and rapidly absorbed in the small intestine. But a portion of dietary starch, termed "resistant starch" (RS) escapes digestion and reaches the large intestine, where it is fermented by colonic bacteria producing short chain fatty acids (SCFA) which are linked to several health benefits. The RS is preferentially derived from amylose, which can be increased by suppressing amylopectin synthesis by silencing of starch branching enzymes (SBEs). However all the previous works attempting the production of high RS crops resulted in only partly increased amylose-content and/or significant yield loss. RESULTS: In this study we invented a new method for silencing of multiple genes. Using a chimeric RNAi hairpin we simultaneously suppressed all genes coding for starch branching enzymes (SBE I, SBE IIa, SBE IIb) in barley (Hordeum vulgare L.), resulting in production of amylose-only starch granules in the endosperm. This trait was segregating 3:1. Amylose-only starch granules were irregularly shaped and showed peculiar thermal properties and crystallinity. Transgenic lines retained high-yield possibly due to a pleiotropic upregualtion of other starch biosynthetic genes compensating the SBEs loss. For gelatinized starch, a very high content of RS (65 %) was observed, which is 2.2-fold higher than control (29%). The amylose-only grains germinated with same frequency as control grains. However, initial growth was delayed in young plants. CONCLUSIONS: This is the first time that pure amylose has been generated with high yield in a living organism. This was achieved by a new method of simultaneous suppression of the entire complement of genes encoding starch branching enzymes. We demonstrate that amylopectin is not essential for starch granule crystallinity and integrity. However the slower initial growth of shoots from amylose-only grains may be due to an important physiological role played by amylopectin ordered crystallinity for rapid starch remobilization explaining the broad conservation in the plant kingdom of the amylopectin structure.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Amilose/biossíntese , Genes de Plantas/genética , Hordeum/enzimologia , Hordeum/genética , Supressão Genética , Varredura Diferencial de Calorimetria , Segregação de Cromossomos/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Pleiotropia Genética , Germinação , Hordeum/anatomia & histologia , Hordeum/crescimento & desenvolvimento , Microscopia de Polarização , Peso Molecular , Fenótipo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sementes/anatomia & histologia , Sementes/ultraestrutura , Solubilidade , Temperatura , Transformação Genética , Transgenes/genética , Difração de Raios X , beta-Glucanas/metabolismo
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 68(Pt 9): 1008-12, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22949184

RESUMO

Barley limit dextrinase (HvLD) is a debranching enzyme from glycoside hydrolase family 13 subfamily 13 (GH13_13) that hydrolyses α-1,6-glucosidic linkages in limit dextrins derived from amylopectin. The structure of HvLD was solved and refined to 1.9 Å resolution. The structure has a glycerol molecule in the active site and is virtually identical to the structures of HvLD in complex with the competitive inhibitors α-cyclodextrin and ß-cyclodextrin solved to 2.5 and 2.1 Å resolution, respectively. However, three loops in the N-terminal domain that are shown here to resemble carbohydrate-binding module family 21 were traceable and were included in the present HvLD structure but were too flexible to be traced and included in the structures of the two HvLD-inhibitor complexes.


Assuntos
Glicosídeo Hidrolases/química , Hordeum/enzimologia , Homologia Estrutural de Proteína , Glicosídeo Hidrolases/metabolismo , Modelos Moleculares , Estrutura Terciária de Proteína , Amido/química , Amido/metabolismo , Especificidade por Substrato
15.
J Mol Biol ; 403(5): 739-50, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-20863834

RESUMO

Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and ß-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded ß-sandwich domain, a six-stranded ß-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (ß/α)(8)-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded ß-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites +1 and +2. A glycerol and three water molecules mimic a glucose residue at subsite -1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite -4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between ß5 and ß6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation.


Assuntos
Ciclodextrinas/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Hordeum/enzimologia , Amido/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ciclodextrinas/química , Dimerização , Glicosídeo Hidrolases/antagonistas & inibidores , Substâncias Macromoleculares , Modelos Moleculares , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sementes/metabolismo
16.
J Biol Chem ; 285(31): 24066-77, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20463021

RESUMO

Plant fatty acids can be completely degraded within the peroxisomes. Fatty acid degradation plays a role in several plant processes including plant hormone synthesis and seed germination. Two multifunctional peroxisomal isozymes, MFP2 and AIM1, both with 2-trans-enoyl-CoA hydratase and l-3-hydroxyacyl-CoA dehydrogenase activities, function in mouse ear cress (Arabidopsis thaliana) peroxisomal beta-oxidation, where fatty acids are degraded by the sequential removal of two carbon units. A deficiency in either of the two isozymes gives rise to a different phenotype; the biochemical and molecular background for these differences is not known. Structure determination of Arabidopsis MFP2 revealed that plant peroxisomal MFPs can be grouped into two families, as defined by a specific pattern of amino acid residues in the flexible loop of the acyl-binding pocket of the 2-trans-enoyl-CoA hydratase domain. This could explain the differences in substrate preferences and specific biological functions of the two isozymes. The in vitro substrate preference profiles illustrate that the Arabidopsis AIM1 hydratase has a preference for short chain acyl-CoAs compared with the Arabidopsis MFP2 hydratase. Remarkably, neither of the two was able to catabolize enoyl-CoA substrates longer than 14 carbon atoms efficiently, suggesting the existence of an uncharacterized long chain enoyl-CoA hydratase in Arabidopsis peroxisomes.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Oxigênio/química , Peroxissomos/química , Proteínas de Arabidopsis/metabolismo , Cristalografia por Raios X/métodos , Ácidos Graxos/química , Modelos Biológicos , Oxirredução , Fenótipo , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Estrutura Terciária de Proteína , Especificidade por Substrato
17.
J Biol Chem ; 285(31): 24078-88, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20463027

RESUMO

The breakdown of fatty acids, performed by the beta-oxidation cycle, is crucial for plant germination and sustainability. beta-Oxidation involves four enzymatic reactions. The final step, in which a two-carbon unit is cleaved from the fatty acid, is performed by a 3-ketoacyl-CoA thiolase (KAT). The shortened fatty acid may then pass through the cycle again (until reaching acetoacetyl-CoA) or be directed to a different cellular function. Crystal structures of KAT from Arabidopsis thaliana and Helianthus annuus have been solved to 1.5 and 1.8 A resolution, respectively. Their dimeric structures are very similar and exhibit a typical thiolase-like fold; dimer formation and active site conformation appear in an open, active, reduced state. Using an interdisciplinary approach, we confirmed the potential of plant KATs to be regulated by the redox environment in the peroxisome within a physiological range. In addition, co-immunoprecipitation studies suggest an interaction between KAT and the multifunctional protein that is responsible for the preceding two steps in beta-oxidation, which would allow a route for substrate channeling. We suggest a model for this complex based on the bacterial system.


Assuntos
Acetil-CoA C-Aciltransferase/química , Arabidopsis/enzimologia , Helianthus/enzimologia , Oxirredução , Peroxissomos/enzimologia , Clonagem Molecular , Cristalografia por Raios X/métodos , Dimerização , Ácidos Graxos/química , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lipídeos/química , Modelos Biológicos , Oxigênio/química , Especificidade por Substrato
18.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 9): 932-41, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19690371

RESUMO

Thioredoxins (Trxs) are protein disulfide reductases that regulate the intracellular redox environment and are important for seed germination in plants. Trxs are in turn regulated by NADPH-dependent thioredoxin reductases (NTRs), which provide reducing equivalents to Trx using NADPH to recycle Trxs to the active form. Here, the first crystal structure of a cereal NTR, HvNTR2 from Hordeum vulgare (barley), is presented, which is also the first structure of a monocot plant NTR. The structure was determined at 2.6 A resolution and refined to an R(cryst) of 19.0% and an R(free) of 23.8%. The dimeric protein is structurally similar to the structures of AtNTR-B from Arabidopsis thaliana and other known low-molecular-weight NTRs. However, the relative position of the two NTR cofactor-binding domains, the FAD and the NADPH domains, is not the same. The NADPH domain is rotated by 25 degrees and bent by a 38% closure relative to the FAD domain in comparison with AtNTR-B. The structure may represent an intermediate between the two conformations described previously: the flavin-oxidizing (FO) and the flavin-reducing (FR) conformations. Here, analysis of interdomain contacts as well as phylogenetic studies lead to the proposal of a new reaction scheme in which NTR-Trx interactions mediate the FO to FR transformation.


Assuntos
Proteínas de Arabidopsis/química , Tiorredoxina Redutase 2/química , Tiorredoxina Dissulfeto Redutase/química , Regulação Alostérica , Sítio Alostérico , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Cristalização , Cristalografia por Raios X , FMN Redutase/química , FMN Redutase/metabolismo , Germinação , Hordeum/enzimologia , Oxirredução , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Homologia Estrutural de Proteína , Tiorredoxina Redutase 2/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo
19.
Protein Sci ; 17(6): 1015-24, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18424513

RESUMO

H-type thioredoxins (Trxs) constitute a particularly large Trx sub-group in higher plants. Here, the crystal structures are determined for the two barley Trx h isoforms, HvTrxh1 and HvTrxh2, in the partially radiation-reduced state to resolutions of 1.7 A, and for HvTrxh2 in the oxidized state to 2.0 A. The two Trxs have a sequence identity of 51% and highly similar fold and active-site architecture. Interestingly, the four independent molecules in the crystals of HvTrxh1 form two relatively large and essentially identical protein-protein interfaces. In each interface, a loop segment of one HvTrxh1 molecule is positioned along a shallow hydrophobic groove at the primary nucleophile Cys40 of another HvTrxh1 molecule. The association mode can serve as a model for the target protein recognition by Trx, as it brings the Met82 Cgamma atom (gamma position as a disulfide sulfur) of the bound loop segment in the proximity of the Cys40 thiol. The interaction involves three characteristic backbone-backbone hydrogen bonds in an antiparallel beta-sheet-like arrangement, similar to the arrangement observed in the structure of an engineered, covalently bound complex between Trx and a substrate protein, as reported by Maeda et al. in an earlier paper. The occurrence of an intermolecular salt bridge between Glu80 of the bound loop segment and Arg101 near the hydrophobic groove suggests that charge complementarity plays a role in the specificity of Trx. In HvTrxh2, isoleucine corresponds to this arginine, which emphasizes the potential for specificity differences between the coexisting barley Trx isoforms.


Assuntos
Hordeum/enzimologia , Isoenzimas/química , Tiorredoxina h/química , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X , Dimerização , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Conformação Proteica , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Especificidade por Substrato , Tiorredoxina h/metabolismo
20.
Plant Physiol Biochem ; 46(3): 292-301, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18272379

RESUMO

Acyl-CoA oxidases (in peroxisomes) and acyl-CoA dehydrogenases (in mitochondria) catalyse the first step in fatty acid beta-oxidation, the pathway responsible for lipid catabolism and plant hormone biosynthesis. The interplay and differences between peroxisomal and mitochondrial beta-oxidation processes are highlighted by the variation in the enzymes involved. Structure and sequence comparisons are made with a focus on the enzyme's mechanistic means to control electron transfer paths, reactivity towards molecular oxygen, and spatial and architectural requirements for substrate discrimination.


Assuntos
Acil-CoA Oxidase/química , Acil-CoA Oxidase/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Acil-CoA Desidrogenases/química , Acil-CoA Desidrogenases/genética , Acil-CoA Desidrogenases/metabolismo , Acil-CoA Oxidase/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Proteínas de Plantas/genética , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...