Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rice (N Y) ; 17(1): 25, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592643

RESUMO

BACKGROUND: Development of transgenic rice overexpressing transcription factors involved in drought response has been previously reported to confer drought tolerance and therefore represents a means of crop improvement. We transformed lowland rice IR64 with OsTZF5, encoding a CCCH-tandem zinc finger protein, under the control of the rice LIP9 stress-inducible promoter and compared the drought response of transgenic lines and nulls to IR64 in successive screenhouse paddy and field trials up to the T6 generation. RESULTS: Compared to the well-watered conditions, the level of drought stress across experiments varied from a minimum of - 25 to - 75 kPa at a soil depth of 30 cm which reduced biomass by 30-55% and grain yield by 1-92%, presenting a range of drought severities. OsTZF5 transgenic lines showed high yield advantage under drought over IR64 in early generations, which was related to shorter time to flowering, lower shoot biomass and higher harvest index. However, the increases in values for yield and related traits in the transgenics became smaller over successive generations despite continued detection of drought-induced transgene expression as conferred by the LIP9 promoter. The decreased advantage of the transgenics over generations tended to coincide with increased levels of homozygosity. Background cleaning of the transgenic lines as well as introgression of the transgene into an IR64 line containing major-effect drought yield QTLs, which were evaluated starting at the BC3F1 and BC2F3 generation, respectively, did not result in consistently increased yield under drought as compared to the respective checks. CONCLUSIONS: Although we cannot conclusively explain the genetic factors behind the loss of yield advantage of the transgenics under drought across generations, our results help in distinguishing among potential drought tolerance mechanisms related to effectiveness of the transgenics, since early flowering and harvest index most closely reflected the levels of yield advantage in the transgenics across generations while reduced biomass did not.

2.
Mol Plant ; 17(3): 368-369, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38238998
3.
Plant Physiol ; 193(4): 2381-2397, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37665979

RESUMO

Developing drought-resistant rice (Oryza sativa, L.) is essential for improving field productivity, especially in rain-fed areas affected by climate change. Wild relatives of rice are potential sources for drought-resistant traits. Therefore, we compared root growth and drought response among 22 wild Oryza species, from which Oryza glumaepatula was selected as a promising source for further exploration. A geographically diverse panel of 69 O. glumaepatula accessions was then screened for drought stress-related traits, and 6 of these accessions showed lower shoot dry weight (SDW) reduction, greater percentage of deep roots, and lower stomatal density (STO) under drought than the drought tolerant O. sativa variety, Sahbhagi dhan. Based on whole-genome resequencing of all 69 O. glumaepatula accessions and variant calling to a high-quality O. glumaepatula reference genome, we detected multiple genomic loci colocating for SDW, root dry weight at 30 to 45 cm depth, and STO in consecutive drought trials. Geo-referencing indicated that the potential drought donors originated in flood-prone locations, corroborating previous hypotheses about the coexistence of flood and drought tolerance within individual Oryza genomes. These findings present potential donor accessions, traits, and genomic loci from an AA genome wild relative of rice that, together with the recently developed reference genome, may be useful for further introgression of drought tolerance into the O. sativa backgrounds.


Assuntos
Oryza , Oryza/genética , Resistência à Seca , Fenótipo , Genoma de Planta/genética , Secas
4.
PLoS Biol ; 21(7): e3002215, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410801

RESUMO

Traditional rice varieties have been critical for developing improved stress-tolerant rice varieties. Tools to analyze the genome sequences of traditional varieties are accelerating the identification and deployment of genes conferring climate change resilience.


Assuntos
Oryza , Oryza/genética , Melhoramento Vegetal , Mudança Climática
5.
Front Plant Sci ; 14: 1173012, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324685

RESUMO

Introduction: The case of combined drought and salinity stress is increasingly becoming a constraint to rice production, especially in coastal areas and river deltas where low rainfall not only reduces soil moisture levels but also reduces the flow of river water, resulting in intrusion of saline sea-water. A standardized screening method is needed in order to systematically evaluate rice cultivars under combined drought+salinity at the same time because sequential stress of salinity followed by drought or vice-versa is not similar to simultaneous stress effects. Therefore, we aimed to develop a screening protocol for combined drought+salinity stress applied to soil-grown plants at seedling stage. Methods: The study system used 30-L soil-filled boxes, which allowed a comparison of plant growth under control conditions, individual drought and salinity stress, as well as combined drought+salinity. A set of salinity tolerant and drought tolerant cultivars were tested, together with several popular but salinity and drought-susceptible varieties that are grown in regions prone to combined drought+salinity. A range of treatments were tested including different timings of the drought and salinity application, and different severities of stress, in order to determine the most effective that resulted in visible distinction among cultivars. The challenges related to determining a protocol with repeatable seedling stage stress treatment effects while achieving a uniform plant stand are described here. Results: The optimized protocol simultaneously applied both stresses by planting into saline soil at 75% of field capacity which was then allowed to undergo progressive drydown. Meanwhile, physiological characterization revealed that chlorophyll fluorescence at seedling stage correlated well with grain yield when drought stress was applied to vegetative stage only. Discussion: The drought+salinity protocol developed here can be used for screening rice breeding populations as part of a pipeline to develop new rice varieties with improved adaptation to combined stresses.

6.
Rice (N Y) ; 16(1): 14, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930351

RESUMO

BACKGROUND: Harvest index is an important component of grain yield and is typically reduced by reproductive stage drought stress in rice. Multiple drought response mechanisms can affect harvest index including plant water status and the degree of stem carbohydrate mobilization during grain filling. In this study, we aimed to dissect the contributions of plant water status and stem carbohydrate mobilization to harvest index. Pairs of genotypes selected for contrasting harvest index but similar biomass and days to flowering were characterized at ICAR-RCER, Patna, India and at IRRI, Philippines. RESULTS: Multiple traits were related with harvest index across experiments, including mobilization efficiency at both sites as indicated by groupings in principal component analysis, and plant water status as indicated by direct correlations. Biomass-related traits were positively correlated with harvest index at IRRI but biomass was negatively correlated with harvest index at ICER-RCER, Patna. We observed that some pairs of genotypes showed differences in harvest index across environments, whereas other showed differences in harvest index only under drought. Of all time points measured when all genotypes were considered together, the stem carbohydrate levels at maturity were most consistently (negatively) correlated with harvest index under drought, but not under well-watered conditions. However, in the pairs of genotypes grouped as those whose differences in harvest index were stable across environments, improved plant water status resulted in a greater ability to both accumulate and remobilize stored carbohydrate, i.e. starch. CONCLUSION: By distinguishing between genotypes whose harvest index was improved across conditions as opposed to specifically under drought, we can attribute the mechanisms behind the stable high-harvest index genotypes to be more related to stem carbohydrate remobilization than to plant water status. The stable high-harvest index lines in this study (Aus 257 and Wanni Dahanala) may confer mechanisms to improve harvest index that are independent of drought response and therefore may be useful for breeding improved rice varieties.

7.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222573

RESUMO

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Assuntos
Mudança Climática , Ecossistema , Humanos , Produtos Agrícolas , Carbono , Secas
8.
Front Plant Sci ; 13: 1006044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507422

RESUMO

Nitrogen (N) and Water (W) - two resources critical for crop productivity - are becoming increasingly limited in soils globally. To address this issue, we aim to uncover the gene regulatory networks (GRNs) that regulate nitrogen use efficiency (NUE) - as a function of water availability - in Oryza sativa, a staple for 3.5 billion people. In this study, we infer and validate GRNs that correlate with rice NUE phenotypes affected by N-by-W availability in the field. We did this by exploiting RNA-seq and crop phenotype data from 19 rice varieties grown in a 2x2 N-by-W matrix in the field. First, to identify gene-to-NUE field phenotypes, we analyzed these datasets using weighted gene co-expression network analysis (WGCNA). This identified two network modules ("skyblue" & "grey60") highly correlated with NUE grain yield (NUEg). Next, we focused on 90 TFs contained in these two NUEg modules and predicted their genome-wide targets using the N-and/or-W response datasets using a random forest network inference approach (GENIE3). Next, to validate the GENIE3 TF→target gene predictions, we performed Precision/Recall Analysis (AUPR) using nine datasets for three TFs validated in planta. This analysis sets a precision threshold of 0.31, used to "prune" the GENIE3 network for high-confidence TF→target gene edges, comprising 88 TFs and 5,716 N-and/or-W response genes. Next, we ranked these 88 TFs based on their significant influence on NUEg target genes responsive to N and/or W signaling. This resulted in a list of 18 prioritized TFs that regulate 551 NUEg target genes responsive to N and/or W signals. We validated the direct regulated targets of two of these candidate NUEg TFs in a plant cell-based TF assay called TARGET, for which we also had in planta data for comparison. Gene ontology analysis revealed that 6/18 NUEg TFs - OsbZIP23 (LOC_Os02g52780), Oshox22 (LOC_Os04g45810), LOB39 (LOC_Os03g41330), Oshox13 (LOC_Os03g08960), LOC_Os11g38870, and LOC_Os06g14670 - regulate genes annotated for N and/or W signaling. Our results show that OsbZIP23 and Oshox22, known regulators of drought tolerance, also coordinate W-responses with NUEg. This validated network can aid in developing/breeding rice with improved yield on marginal, low N-input, drought-prone soils.

9.
Evol Appl ; 15(10): 1670-1690, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36330294

RESUMO

Accurately predicting responses to selection is a major goal in biology and important for successful crop breeding in changing environments. However, evolutionary responses to selection can be constrained by such factors as genetic and cross-environment correlations, linkage, and pleiotropy, and our understanding of the extent and impact of such constraints is still developing. Here, we conducted a field experiment to investigate potential constraints to selection for drought resistance in rice (Oryza sativa) using phenotypic selection analysis and quantitative genetics. We found that traits related to drought response were heritable, and some were under selection, including selection for earlier flowering, which could allow drought escape. However, patterns of selection generally were not opposite under wet and dry conditions, and we did not find individual or closely linked genes that influenced multiple traits, indicating a lack of evidence that antagonistic pleiotropy, linkage, or cross-environment correlations would constrain selection for drought resistance. In most cases, genetic correlations had little influence on responses to selection, with direct and indirect selection largely congruent. The exception to this was seed mass under drought, which was predicted to evolve in the opposite direction of direct selection due to correlations. Because of this indirect effect on selection on seed mass, selection for drought resistance was not accompanied by a decrease in seed mass, and yield increased with fecundity. Furthermore, breeding lines with high fitness and yield under drought also had high fitness and yield under wet conditions, indicating that there was no evidence for a yield penalty on drought resistance. We found multiple genes in which expression influenced both water use efficiency (WUE) and days to first flowering, supporting a genetic basis for the trade-off between drought escape and avoidance strategies. Together, these results can provide helpful guidance for understanding and managing evolutionary constraints and breeding stress-resistant crops.

10.
Front Plant Sci ; 13: 1008954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340400

RESUMO

Drought stress in Southeast Asia greatly affects rice production, and the rice root system plays a substantial role in avoiding drought stress. In this study, we examined the phenotypic and genetic correlations among root anatomical, morphological, and agronomic phenotypes over multiple field seasons. A set of >200 rice accessions from Southeast Asia (a subset of the 3000 Rice Genomes Project) was characterized with the aim to identify root morphological and anatomical phenotypes related to productivity under drought stress. Drought stress resulted in slight increases in the basal metaxylem and stele diameter of nodal roots. Although few direct correlations between root phenotypes and grain yield were identified, biomass was consistently positively correlated with crown root number and negatively correlated with stele diameter. The accessions with highest grain yield were characterized by higher crown root numbers and median metaxylem diameter and smaller stele diameter. Genome-wide association study (GWAS) revealed 162 and 210 significant SNPs associated with root phenotypes in the two seasons which resulted in identification of 59 candidate genes related to root development. The gene OsRSL3 was found in a QTL region for median metaxylem diameter. Four SNPs in OsRSL3 were found that caused amino acid changes and significantly associated with the root phenotype. Based on the haplotype analysis for median metaxylem diameter, the rice accessions studied were classified into five allele combinations in order to identify the most favorable haplotypes. The candidate genes and favorable haplotypes provide information useful for the genetic improvement of root phenotypes under drought stress.

11.
Front Plant Sci ; 13: 959629, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072326

RESUMO

Drought is a major source of yield loss in the production of rice (Oryza sativa L.), and cultivars that maintain yield under drought across environments and drought stress scenarios are urgently needed. Root phenotypes directly affect water interception and uptake, so plants with root systems optimized for water uptake under drought would likely exhibit reduced yield loss. Deeper nodal roots that have a low metabolic cost per length (i.e., cheaper roots) via smaller root diameter and/or more aerenchyma and that transport water efficiently through smaller diameter metaxylem vessels may be beneficial during drought. Subsets of the Rice Diversity Panel 1 and Azucena × IR64 recombinant inbred lines were grown in two greenhouse and two rainout shelter experiments under drought stress to assess their shoot, root anatomical, and root architectural phenotypes. Root traits and root trait plasticity in response to drought varied with genotype and environment. The best-performing groups in the rainout shelter experiments had less plasticity of living tissue area in nodal roots than the worst performing groups. Root traits under drought were partitioned into similar groups or clusters via the partitioning-around-medoids algorithm, and this revealed two favorable integrated root phenotypes common within and across environments. One favorable integrated phenotype exhibited many, deep nodal roots with larger root cross-sectional area and more aerenchyma, while the other favorable phenotype exhibited many, deep nodal roots with small root cross-sectional area and small metaxylem vessels. Deeper roots with high theoretical axial hydraulic conductance combined with reduced root metabolic cost contributed to greater shoot biomass under drought. These results reflect how some root anatomical and architectural phenes work in concert as integrated phenotypes to influence the performance of plant under drought stress. Multiple integrated root phenotypes are therefore recommended to be selected in breeding programs for improving rice yield across diverse environments and drought scenarios.

12.
Plant Cell Environ ; 45(3): 805-822, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35141925

RESUMO

Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional-structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L-type and S-type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct-seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct-seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding.


Assuntos
Nitrogênio , Oryza , Oryza/genética , Fenótipo , Raízes de Plantas , Solo/química
13.
Plant Cell Environ ; 45(3): 854-870, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35099814

RESUMO

The aus rice variety group originated in stress-prone regions and is a promising source for the development of new stress-tolerant rice cultivars. In this study, an aus panel (~220 genotypes) was evaluated in field trials under well-watered and drought conditions and in the greenhouse (basket, herbicide and lysimeter studies) to investigate relationships between grain yield and root architecture, and to identify component root traits behind the composite trait of deep root growth. In the field trials, high and stable grain yield was positively related to high and stable deep root growth (r = 0.16), which may indicate response to within-season soil moisture fluctuations (i.e., plasticity). When dissecting component traits related to deep root growth (including angle, elongation and branching), the number of nodal roots classified as 'large-diameter' was positively related to deep root growth (r = 0.24), and showed the highest number of colocated genome-wide association study (GWAS) peaks with grain yield under drought. The role of large-diameter nodal roots in deep root growth may be related to their branching potential. Two candidate loci that colocated for yield and root traits were identified that showed distinct haplotype distributions between contrasting yield/stability groups and could be good candidates to contribute to rice improvement.


Assuntos
Oryza , Mapeamento Cromossômico , Secas , Grão Comestível , Estudo de Associação Genômica Ampla , Oryza/fisiologia
14.
Plant Cell Environ ; 45(3): 595-601, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35092061
15.
Plant Cell ; 34(2): 759-783, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34791424

RESUMO

Rice (Oryza sativa) was domesticated around 10,000 years ago and has developed into a staple for half of humanity. The crop evolved and is currently grown in stably wet and intermittently dry agro-ecosystems, but patterns of adaptation to differences in water availability remain poorly understood. While previous field studies have evaluated plant developmental adaptations to water deficit, adaptive variation in functional and hydraulic components, particularly in relation to gene expression, has received less attention. Here, we take an evolutionary systems biology approach to characterize adaptive drought resistance traits across roots and shoots. We find that rice harbors heritable variation in molecular, physiological, and morphological traits that is linked to higher fitness under drought. We identify modules of co-expressed genes that are associated with adaptive drought avoidance and tolerance mechanisms. These expression modules showed evidence of polygenic adaptation in rice subgroups harboring accessions that evolved in drought-prone agro-ecosystems. Fitness-linked expression patterns allowed us to identify the drought-adaptive nature of optimizing photosynthesis and interactions with arbuscular mycorrhizal fungi. Taken together, our study provides an unprecedented, integrative view of rice adaptation to water-limited field conditions.


Assuntos
Adaptação Fisiológica/fisiologia , Secas , Variação Genética , Oryza/fisiologia , Produtos Agrícolas/fisiologia , Domesticação , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Micorrizas/fisiologia , Fotossíntese/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , Seleção Genética , Biologia de Sistemas
16.
J Exp Bot ; 72(14): 5208-5220, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-33989419

RESUMO

By responding to the variable soil environments in which they are grown, the roots of rice crops are likely to contribute to yield stability across a range of soil moistures, nutrient levels, and establishment methods. In this study, we explored different approaches to quantification of root plasticity and characterization of its relationship with yield stability. Using four different statistical approaches (plasticity index, slope, AMMI, and factor analytic) on a set of 17 genotypes including several recently-developed breeding lines targeted to dry direct-seeding, we identified only very few direct relationships between root plasticity and yield stability. However, genotypes identified as having combined yield stability and root plasticity showed higher grain yields across trials. Furthermore, root plasticity was expressed to a greater degree in puddled transplanted trials rather than under dry direct-seeding. Significant interactions between nitrogen and water resulted in contrasting relationships between nitrogen-use efficiency and biomass stability between puddled-transplanted and direct-seeded conditions. These results reflect the complex interaction between nitrogen, drought, and even different types of drought (as a result of the establishment method) on rice root growth, and suggest that although rice root plasticity may confer stable yield across a range of environments, it might be necessary to more narrowly define the targeted environments to which it will be most beneficial.


Assuntos
Oryza , Secas , Grão Comestível , Oryza/genética , Melhoramento Vegetal , Sementes
17.
J Exp Bot ; 72(13): 4981-4992, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33852008

RESUMO

Direct selection for yield under drought has resulted in the release of a number of drought-tolerant rice varieties across Asia. In this study, we characterized the physiological traits that have been affected by this strategy in breeding trials across sites in Bangladesh, India, and Nepal. Drought- breeding lines and drought-tolerant varieties showed consistently longer flag leaves and lower stomatal density than our drought-susceptible check variety, IR64. The influence of environmental parameters other than drought treatments on leaf traits was evidenced by close grouping of treatments within a site. Flag-leaf length and width appeared to be regulated by different environmental parameters. In separate trials in the Philippines, the same breeding lines studied in South Asia showed that canopy temperature under drought and harvest index across treatments were most correlated with grain yield. Both atmospheric and soil stress strengthened the relationships between leaf traits and yield. The stable expression of leaf traits among genotypes and the identification of the environmental conditions in which they contribute to yield, as well as the observation that some breeding lines showed longer time to flowering and higher canopy temperature than IR64, suggest that selection for additional physiological traits may result in further improvements of this breeding pool.


Assuntos
Secas , Oryza , Grão Comestível , Oryza/genética , Melhoramento Vegetal , Folhas de Planta
18.
Plant Cell Environ ; 44(7): 2245-2261, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33715176

RESUMO

High night temperature (HNT) causes substantial yield loss in rice (Oryza sativa L.). In this study, the physiological processes related to flag leaf dark respiration (Rn) and grain filling under HNT were explored in a multi-parent advanced generation intercross population developed for heat tolerance (MAGICheat ) along with selected high temperature tolerant breeding lines developed with heat-tolerant parents. Within a subset of lines, flag leaf Rn under HNT treatment was related to lower spikelet number per panicle and thus reduced yield. HNT enhanced the nighttime reduction of non-structural carbohydrates (NSC) in stem tissue, but not in leaves, and stem nighttime NSC reduction was negatively correlated with yield. Between heading and harvest, the major difference in NSC concentration was found for starch, but not for soluble sugar. HNT weakened the relationship between NSC remobilization and harvest index at both the phenotypic and genetic level. By using genome-wide association studies, an invertase inhibitor, MADS box transcription factors and a UDP-glycosyltransferase that were identified as candidate genes orchestrating stem NSC remobilization in the control treatment were lost under HNT. With the identification of physiological and genetic components related to rice HNT response, this study offers promising prebreeding materials and trait targets to sustain yield stability under climate change.


Assuntos
Oryza/fisiologia , Sementes/crescimento & desenvolvimento , Termotolerância/fisiologia , Metabolismo dos Carboidratos , Escuridão , Estudo de Associação Genômica Ampla , Temperatura Alta , Filipinas , Folhas de Planta/fisiologia , Caules de Planta/genética , Caules de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Field Crops Res ; 260: 107977, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33390645

RESUMO

The complexity of genotype × environment interactions under drought reduces heritability, which determines the effectiveness of selection for drought tolerance and development of drought tolerant varieties. Genetic progress measured through changes in yield performance over time is important in determining the efficiency of breeding programmes in which test cultivars are replaced each year on the assumption that the new cultivars will surpass the older cultivars. The goal of our study was to determine the annual rate of genetic gain for rice grain yield in a drought-prone rainfed system in a series of multi-environment trials conducted from 2005 to 2014 under the Drought Breeding Network of Indian sites in collaboration with the International Rice Research Institute (IRRI). Our results show a positive trend in grain yield with an annual genetic yield increase of about 0.68 % under irrigated control, 0.87 % under moderate reproductive stage drought stress and 1.9 % under severe reproductive stage drought stress due to breeding efforts. The study also demonstrates the effectiveness of direct selection for grain yield under both irrigated control as well as managed drought stress screening to improve yield in typical rainfed systems. IRRI's drought breeding programme has exhibited a significant positive trend in genetic gain for grain yield over the years under both drought stress as well as favorable irrigated control conditions. Several drought tolerant varieties released from the programme have outperformed the currently grown varieties under varied conditions in the rainfed environments on farmers' fields.

20.
Crop Sci ; 60(1): 367-380, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32536700

RESUMO

Rice (Oryza sativa L.) plants have the ability to develop ratoon tillers if the terminal growing point is lost, such as when the panicle has been aborted, matured, or harvested. We examined postharvest and midseason ratooning as management strategies for damaged rice crops, both in irrigated and rainfed conditions. Genotypic variation was observed in terms of postharvest ratoon tillering, midseason ratoon crop growth after lodging, and midseason ratoon crop growth after drought stress. The genotypic variation in postharvest ratoon tillering was related to stem carbohydrate levels at the time of main crop harvest and was affected by soil moisture levels at the time of main crop harvest. Drought-tolerant varieties did not consistently show improved ratoon crop growth. After lodging, cutting stems at a height of 30 cm produced the highest numbers of ratoon tillers, and the contribution of the ratoon crop to the total harvestable grain yield was highest when the ratoon crop was initiated at earlier growth stages. The highest ratoon grain yields recovered from lodged crops ranged up to 3.58 t ha-1. Total grain yield after drought was improved by trimming the leaves and panicles only in certain conditions and did not appear to be correlated with stem carbohydrate levels. These results suggest that management strategies may be recommended to farmers that exploit the ratooning ability of rice for improved recovery after midseason crop damage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...