Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 691754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220915

RESUMO

Terpenoids are a large and diverse class of plant metabolites that also includes volatile mono- and sesquiterpenes which are involved in biotic interactions of plants. Due to the limited natural availability of these terpenes and the tight regulation of their biosynthesis, there is strong interest to introduce or enhance their production in crop plants by metabolic engineering for agricultural, pharmaceutical and industrial applications. While engineering of monoterpenes has been quite successful, expression of sesquiterpene synthases in engineered plants frequently resulted in production of only minor amounts of sesquiterpenes. To identify bottlenecks for sesquiterpene engineering in plants, we have used two nearly identical terpene synthases, snapdragon (Antirrhinum majus) nerolidol/linalool synthase-1 and -2 (AmNES/LIS-1/-2), that are localized in the cytosol and plastids, respectively. Since these two bifunctional terpene synthases have very similar catalytic properties with geranyl diphosphate (GPP) and farnesyl diphosphate (FPP), their expression in target tissues allows indirect determination of the availability of these substrates in both subcellular compartments. Both terpene synthases were expressed under control of the ripening specific PG promoter in tomato fruits, which are characterized by a highly active terpenoid metabolism providing precursors for carotenoid biosynthesis. As AmNES/LIS-2 fruits produced the monoterpene linalool, AmNES/LIS-1 fruits were found to exclusively produce the sesquiterpene nerolidol. While nerolidol emission in AmNES/LIS-1 fruits was 60- to 584-fold lower compared to linalool emission in AmNES/LIS-2 fruits, accumulation of nerolidol-glucosides in AmNES/LIS-1 fruits was 4- to 14-fold lower than that of linalool-glucosides in AmNES/LIS-2 fruits. These results suggest that only a relatively small pool of FPP is available for sesquiterpene formation in the cytosol. To potentially overcome limitations in sesquiterpene production, we transiently co-expressed the key pathway-enzymes hydroxymethylglutaryl-CoA reductase (HMGR) and 1-deoxy-D-xylulose 5-phosphate synthase (DXS), as well as the regulator isopentenyl phosphate kinase (IPK). While HMGR and IPK expression increased metabolic flux toward nerolidol formation 5.7- and 2.9-fold, respectively, DXS expression only resulted in a 2.5-fold increase.

2.
Sci Adv ; 6(20): eaba0721, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32426505

RESUMO

Catnip or catmint (Nepeta spp.) is a flowering plant in the mint family (Lamiaceae) famed for its ability to attract cats. This phenomenon is caused by the compound nepetalactone, a volatile iridoid that also repels insects. Iridoids are present in many Lamiaceae species but were lost in the ancestor of the Nepetoideae, the subfamily containing Nepeta. Using comparative genomics, ancestral sequence reconstructions, and phylogenetic analyses, we probed the re-emergence of iridoid biosynthesis in Nepeta. The results of these investigations revealed mechanisms for the loss and subsequent re-evolution of iridoid biosynthesis in the Nepeta lineage. We present evidence for a chronology of events that led to the formation of nepetalactone biosynthesis and its metabolic gene cluster. This study provides insights into the interplay between enzyme and genome evolution in the origins, loss, and re-emergence of plant chemical diversity.


Assuntos
Nepeta , Monoterpenos Ciclopentânicos , Iridoides/química , Iridoides/metabolismo , Nepeta/química , Nepeta/metabolismo , Filogenia , Pironas
3.
Nat Plants ; 4(9): 721-729, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127411

RESUMO

Plant genomes encode isopentenyl phosphate kinases (IPKs) that reactivate isopentenyl phosphate (IP) via ATP-dependent phosphorylation, forming the primary metabolite isopentenyl diphosphate (IPP) used generally for isoprenoid/terpenoid biosynthesis. Therefore, the existence of IPKs in plants raises unanswered questions concerning the origin and regulatory roles of IP in plant terpenoid metabolism. Here, we provide genetic and biochemical evidence showing that IP forms during specific dephosphorylation of IPP catalysed by a subset of Nudix superfamily hydrolases. Increasing metabolically available IP by overexpression of a bacterial phosphomevalonate decarboxylase (MPD) in Nicotiana tabacum resulted in significant enhancement in both monoterpene and sesquiterpene production. These results indicate that perturbing IP metabolism results in measurable changes in terpene products derived from both the methylerythritol phosphate (MEP) and mevalonate (MVA) pathways. Moreover, the unpredicted peroxisomal localization of bacterial MPD led us to discover that the step catalysed by phosphomevalonate kinase (PMK) imposes a hidden constraint on flux through the classical MVA pathway. These complementary findings fundamentally alter conventional views of metabolic regulation of terpenoid metabolism in plants and provide new metabolic engineering targets for the production of high-value terpenes in plants.


Assuntos
Hemiterpenos/metabolismo , Compostos Organofosforados/metabolismo , Terpenos/metabolismo , Arabidopsis/metabolismo , Redes e Vias Metabólicas , Fosfotransferases/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Nicotiana/metabolismo
4.
Proc Natl Acad Sci U S A ; 112(32): 10050-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216978

RESUMO

Terpenoids, compounds found in all domains of life, represent the largest class of natural products with essential roles in their hosts. All terpenoids originate from the five-carbon building blocks, isopentenyl diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP), which can be derived from the mevalonic acid (MVA) and methylerythritol phosphate (MEP) pathways. The absence of two components of the MVA pathway from archaeal genomes led to the discovery of an alternative MVA pathway with isopentenyl phosphate kinase (IPK) catalyzing the final step, the formation of IPP. Despite the fact that plants contain the complete classical MVA pathway, IPK homologs were identified in every sequenced green plant genome. Here, we show that IPK is indeed a member of the plant terpenoid metabolic network. It is localized in the cytosol and is coexpressed with MVA pathway and downstream terpenoid network genes. In planta, IPK acts in parallel with the MVA pathway and plays an important role in regulating the formation of both MVA and MEP pathway-derived terpenoid compounds by controlling the ratio of IP/DMAP to IPP/DMAPP. IP and DMAP can also competitively inhibit farnesyl diphosphate synthase. Moreover, we discovered a metabolically available carbon source for terpenoid formation in plants that is accessible via IPK overexpression. This metabolite reactivation approach offers new strategies for metabolic engineering of terpenoid production.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Archaea/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Terpenos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citosol/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Hemiterpenos/metabolismo , Cinética , Redes e Vias Metabólicas/genética , Ácido Mevalônico/metabolismo , Compostos Organofosforados/metabolismo , Plantas Geneticamente Modificadas , Plastídeos/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Homologia de Sequência de Aminoácidos , Sesquiterpenos/metabolismo , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...