Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 79(20): 12989-98, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16189001

RESUMO

Foot-and-mouth disease virus (FMDV) initiates infection by binding to integrin receptors via an Arg-Gly-Asp (RGD) sequence found in the G-H loop of the structural protein VP1. Following serial passages of a type A(24) Cruzeiro virus (A(24)Cru) in bovine, via tongue inoculation, a virus was generated which contained an SGD sequence in the cell receptor-binding site and expressed a turbid plaque phenotype in BHK-21 cells. Propagation of this virus in these cells resulted in the rapid selection of viruses that grew to higher titers, produced clear plaques, and now contained an RGD sequence in place of the original SGD. To study the role of the SGD sequence in FMDV receptor recognition and bovine virulence, we assembled an infectious cDNA clone of an RGD-containing A(24)Cru and derived mutant clones containing either SGD with a single nucleotide substitution in the R(144) codon or double substitutions at this position to prevent mutation of the S to an R. The SGD viruses grew poorly in BHK-21 cells and stably maintained the sequence during propagation in BHK-21 cells expressing the bovine alpha(V)beta(6) integrin (BHK3-alpha(V)beta(6)), as well as in experimentally infected and contact steers. While all the SGD-containing viruses used only the bovine alpha(V)beta(6) integrin as a cellular receptor with relatively high efficiency, the revertant RGD viruses utilized either the alpha(V)beta(1) or alpha(V)beta(3) bovine integrins with higher efficiency than alpha(V)beta(6) and grew well in BHK-21 cells. Replacing the R at the -1 SGD position with either K or E showed that this residue did not contribute to integrin utilization in vitro. These results illustrate the rapid evolution of FMDV with alteration in receptor specificity and suggest that viruses with sequences other than RGD, but closely related to it, can still infect via integrin receptors and induce and transmit the disease to susceptible animals.


Assuntos
Vírus da Febre Aftosa/crescimento & desenvolvimento , Febre Aftosa/virologia , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/fisiologia , Proteínas do Capsídeo/genética , Bovinos , Linhagem Celular , Vírus da Febre Aftosa/química , Genoma Viral , Integrina alfaVbeta3/fisiologia , Integrinas/fisiologia , Dados de Sequência Molecular , Receptores Virais/fisiologia , Receptores de Vitronectina/fisiologia , Especificidade da Espécie
2.
J Virol ; 77(24): 13017-27, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14645558

RESUMO

The genome of foot-and-mouth disease virus (FMDV) differs from that of other picornaviruses in that it encodes a larger 3A protein (>50% longer than poliovirus 3A), as well as three copies of protein 3B (also known as VPg). Previous studies have shown that a deletion of amino acids 93 to 102 of the 153-codon 3A protein is associated with an inability of a Taiwanese strain of FMDV (O/TAW/97) to cause disease in bovines. Recently, an Asian virus with a second 3A deletion (amino acids 133 to 143) has also been detected (N. J. Knowles et al., J. Virol. 75:1551-1556, 2001). Genetically engineered viruses harboring the amino acids 93 to 102 or 133 to 143 grew well in porcine cells but replicated poorly in bovine cells, whereas a genetically engineered derivative of the O/TAW/97 virus expressing a full-length 3A (strain A12) grew well in both cell types. Interestingly, a virus with a deletion spanning amino acid 93 to 144 also grew well in porcine cells and caused disease in swine. Further, genetically engineered viruses containing only a single copy of VPg were readily recovered with the full-length 3A, the deleted 3A (amino acids 93 to 102), or the "super" deleted forms of 3A (missing amino acids 93 to 144). All of the single-VPg viruses were attenuated in porcine cells and replicated poorly in bovine cells. The single-VPg viruses produced a mild disease in swine, indicating that the VPg copy number is an important determinant of host range and virulence. The association of VPg copy number with increased virulence in vivo may help to explain why all naturally occurring FMDVs have retained three copies of VPg.


Assuntos
Vírus da Febre Aftosa/patogenicidade , Febre Aftosa/fisiopatologia , Doenças dos Suínos/fisiopatologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Animais , Bovinos , Linhagem Celular , Febre Aftosa/virologia , Vírus da Febre Aftosa/genética , Deleção de Sequência , Especificidade da Espécie , Suínos , Doenças dos Suínos/virologia , Proteínas do Core Viral/genética , Virulência , Replicação Viral
4.
J Virol ; 76(19): 9686-94, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12208947

RESUMO

Over the last few years, an essential RNA structure known as the cis-acting replicative element (cre) has been identified within the protein-coding region of several picornaviruses. The cre, a stem-loop structure containing a conserved AAACA motif, functions as a template for addition of U residues to the protein primer 3B. By surveying the genomes of representatives of several serotypes of foot-and-mouth disease virus (FMDV), we discovered a putative cre in the 5' untranslated region of the genome (contiguous with the internal ribosome entry site [IRES]). To confirm the role of this putative cre in replication, we tested the importance of the AAACA motif and base pairing in the stem in FMDV genome replication. To this end, cre mutations were cloned into an FMDV replicon and into synthetic viral genomes. Analyses of the properties of these replicons and genomes revealed the following. (i) Mutations in the AAACA motif severely reduced replication, and all viruses recovered from genomes containing mutated AAACA sequences had reverted to the wild-type sequence. (ii) Mutations in the stem region showed that the ability to form this base-paired structure was important for replication. Although the cre was contiguous with the IRES, the mutations we created did not significantly reduce IRES-mediated translation in vivo. Finally, the position of the cre at the 5' end of the genome was shown not to be critical for replication, since functional replicons and viruses lacking the 5' cre could be obtained if a wild-type cre was added to the genome following the 3D(pol) coding region. Taken together, these results support the importance of the cre in replication and demonstrate that the activity of this essential element does not require localization within the polyprotein-encoding region of the genome.


Assuntos
Vírus da Febre Aftosa/genética , RNA Viral/química , Replicação Viral/genética , Regiões 5' não Traduzidas/química , Animais , Linhagem Celular , Cricetinae , Genoma Viral , RNA Viral/fisiologia , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...