Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Catal ; 12(22): 13838-13852, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36439035

RESUMO

A set of doped iron oxides (chromium, aluminum, gallium, indium, manganese, zinc, niobium) were prepared by a one-step coprecipitation/calcination approach evaluated for their WGS activity under industrially relevant conditions and characterized in detail. The WGS activity after ageing the doped catalyst for 4 days at 25 bar follows the order chromium ≈ aluminum > gallium > indium > manganese > zinc > niobium for copper-codoped catalysts. The activated catalysts predominantly consist of magnetite, irrespective of the dopant. Mössbauer spectra of aged catalysts showed that aluminum and zinc occupy both tetrahedral and octahedral sites of magnetite, while chromium, gallium, indium, manganese, and niobium preferentially substitute octahedral iron. The incorporation of trivalent metal ions of similar size to octahedral Fe3+ (i.e., chromium, aluminum, gallium) results in moderate to high CO conversion, irrespective of incorporation in tetrahedral or octahedral sites. The substitution of Fe2+ with Mn2+ results in an increased Fe3+/Fe2+ ratio. Incorporation of Zn2+ in tetrahedral sites (replacing Fe3+ ions) leads to a complex structure where the charge balance is compensated from the octahedral sites. Separate dopant metal oxide phases were observed in indium- and niobium-doped catalysts. XPS shows that copper is present as a separate phase in activated copper-codoped catalysts. Aluminum is identified as the most promising promoter for substituting chromium in commercial high-temperature WGS catalysts on the basis of their similar high CO conversion although incorporation of these dopants into the magnetite structure differed substantially.

2.
Rev Sci Instrum ; 88(9): 093902, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964168

RESUMO

A reactor cell for in situ studies of individual catalyst nanoparticles or surfaces by nano-focused (coherent) x-ray diffraction has been developed. Catalytic reactions can be studied in flow mode in a pressure range of 10-2-103 mbar and temperatures up to 900 °C. This instrument bridges the pressure and materials gap at the same time within one experimental setup. It allows us to probe in situ the structure (e.g., shape, size, strain, faceting, composition, and defects) of individual nanoparticles using a nano-focused x-ray beam. Here, the setup was used to observe strain and facet evolution of individual model Pt catalysts during in situ experiments. It can be used for heating other (non-catalytically active) nanoparticles (e.g., nanowires) in inert or reactive gas atmospheres or vacuum as well.

3.
Phys Chem Chem Phys ; 15(40): 17038-63, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24030478

RESUMO

The increasing availability of quantum-chemical data on surface reaction intermediates invites one to revisit unresolved mechanistic issues in heterogeneous catalysis. One such issue of particular current interest is the molecular basis of the Fischer-Tropsch reaction. Here we review current molecular understanding of this reaction that converts synthesis gas into longer hydrocarbons where we especially elucidate recent progress due to the contributions of computational catalysis. This perspective highlights the theoretical approach to heterogeneous catalysis that aims for kinetic prediction from quantum-chemical first principle data. Discussion of the Fischer-Tropsch reaction from this point of view is interesting because of the several mechanistic options available for this reaction. There are many proposals on the nature of the monomeric single C atom containing intermediate that is inserted into the growing hydrocarbon chain as well as on the nature of the growing hydrocarbon chain itself. Two dominant conflicting mechanistic proposals of the Fischer-Tropsch reaction that will be especially compared are the carbide mechanism and the CO insertion mechanism, which involve cleavage of the C-O bond of CO before incorporation of a CHx species into the growing hydrocarbon chain (the carbide mechanism) or after incorporation into the growing hydrocarbon chain (the CO insertion mechanism). The choice of a particular mechanism has important kinetic consequences. Since it is based on molecular information it also affects the structure sensitivity of this particular reaction and hence influences the choice of catalyst composition. We will show how quantum-chemical information on the relative stability of relevant reaction intermediates and estimates of the rate constants of corresponding elementary surface reactions provides a firm foundation to the kinetic analysis of such reactions and allows one to discriminate between the different mechanistic options. The paper will be concluded with a short perspective section dealing with the needs for future research. Many of the current key questions on the physical chemistry as well as computational study of heterogeneous catalysis relate to particular topics for further research on the fundamental aspects of Fischer-Tropsch catalysis.


Assuntos
Hidrocarbonetos/química , Teoria Quântica , Catálise , Dicroísmo Circular , Cinética
4.
Phys Chem Chem Phys ; 11(41): 9578-82, 2009 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19830344

RESUMO

Ceria-supported gold catalysts before and after leaching by NaCN were investigated by X-ray absorption spectroscopy at the Au L(III) edge. After gold leaching, isolated gold cations remain in close interaction with the support. These ions form an ideal precursor to very small clusters of a few gold atoms upon reduction. The resulting gold clusters exhibit a very high intrinsic activity in the hydrogenation of 1,3-butadiene, which is at least one order of magnitude higher than that of the nanometre-sized gold particles in the non-leached parent catalyst. These findings point to a very strong structure sensitivity of the gold-catalyzed hydrogenation of dienes.

5.
Phys Chem Chem Phys ; 7(16): 3088-92, 2005 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16186914

RESUMO

The activation of ethane over zinc- and gallium-modified HZSM-5 dehydrogenation catalysts was studied by diffuse reflectance infrared spectroscopy. Hydrocarbon activation on HZSM-5 modified by bivalent Zn and univalent Ga cations proceeds via two distinctly different mechanisms. The stronger molecular adsorption of ethane by the acid-base pairs formed by distantly separated cationic Zn2+ and basic oxygen sites results already at room temperature in strong polarizability of adsorbed ethane and subsequent heterolytic dissociative adsorption at moderate temperatures. In contrast, molecular adsorption of ethane on Ga+ cations is weak. At high temperatures dissociative hydrocarbon adsorption takes place, resulting in the formation of ethyl and hydride fragments coordinating to the cationic gallium species. Whereas in the zinc case a Brønsted acid proton is formed upon ethane dissociation, decomposition of the ethyl fragment on gallium results in gallium dihydride species and does not lead to Brønsted acid protons. This difference in alkane activation has direct consequences for hydrocarbon conversions involving dehydrogenation.


Assuntos
Etano/química , Gálio/química , Modelos Químicos , Zeolitas/química , Zinco/química , Adsorção , Catálise , Cátions , Simulação por Computador , Propriedades de Superfície , Zeolitas/análise , Zinco/análise
6.
Chem Commun (Camb) ; (11): 1232-3, 2002 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-12109097

RESUMO

Fe-oxide species in Fe/ZSM-5 (prepared by chemical vapor deposition of FeCl3)--active in N2O decomposition--react with zeolite protons during high temperature calcination to give highly active cationic Fe species, this transformation being reversible upon exposure to water vapor at lower temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...