Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Soft Matter ; 19(35): 6691-6699, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37609884

RESUMO

We assess the ability of two light responsive kinesin motor clusters to drive dynamics of microtubule-based active nematics: opto-K401, a processive motor, and opto-K365, a non-processive motor. Measurements reveal an order of magnitude improvement in the contrast of nematic flow speeds between maximally- and minimally-illuminated states for opto-K365 motors when compared to opto-K401 construct. For opto-K365 nematics, we characterize both the steady-state flow and defect density as a function of applied light. We also examine the transient behavior as the system switches between steady-states upon changes in light intensities. Although nematic flows reach a steady state within tens of seconds, the defect density exhibits transient behavior for up to 10 minutes, showing a separation between small-scale active flows and system-scale structural states. Our work establishes an experimental platform that can exploit spatiotemporally-heterogeneous patterns of activity to generate targeted dynamical states.

2.
Nat Commun ; 14(1): 4237, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454159

RESUMO

Photonic crystals-a class of materials whose optical properties derive from their structure in addition to their composition-can be created by self-assembling particles whose sizes are comparable to the wavelengths of visible light. Proof-of-principle studies have shown that DNA can be used to guide the self-assembly of micrometer-sized colloidal particles into fully programmable crystal structures with photonic properties in the visible spectrum. However, the extremely temperature-sensitive kinetics of micrometer-sized DNA-functionalized particles has frustrated attempts to grow large, monodisperse crystals that are required for photonic metamaterial applications. Here we describe a robust two-step protocol for self-assembling single-domain crystals that contain millions of optical-scale DNA-functionalized particles: Monodisperse crystals are initially assembled in monodisperse droplets made by microfluidics, after which they are grown to macroscopic dimensions via seeded diffusion-limited growth. We demonstrate the generality of our approach by assembling different macroscopic single-domain photonic crystals with metamaterial properties, like structural coloration, that depend on the underlying crystal structure. By circumventing the fundamental kinetic traps intrinsic to crystallization of optical-scale DNA-coated colloids, we eliminate a key barrier to engineering photonic devices from DNA-programmed materials.


Assuntos
Óptica e Fotônica , Fótons , Coloides/química , Cristalização , DNA
3.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34949716

RESUMO

DNA-coated colloids can self-assemble into an incredible diversity of crystal structures, but their applications have been limited by poor understanding and control over the crystallization dynamics. To address this challenge, we use microfluidics to quantify the kinetics of DNA-programmed self-assembly along the entire crystallization pathway, from thermally activated nucleation through reaction-limited and diffusion-limited phases of crystal growth. Our detailed measurements of the temperature and concentration dependence of the kinetics at all stages of crystallization provide a stringent test of classical theories of nucleation and growth. After accounting for the finite rolling and sliding rates of micrometer-sized DNA-coated colloids, we show that modified versions of these classical theories predict the absolute nucleation and growth rates with quantitative accuracy. We conclude by applying our model to design and demonstrate protocols for assembling large single crystals with pronounced structural coloration, an essential step in creating next-generation optical metamaterials from colloids.

4.
Langmuir ; 36(25): 7100-7108, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32013444

RESUMO

Coating colloidal particles with DNA is a promising strategy to make functional nanoscale materials because the particles can be programmed to spontaneously self-assemble into complex, ordered structures. In this Article, we explore the phase behavior and types of structures that can be formed when interactions between DNA-coated colloids are specified by linker DNA strands dispersed in solution. We show that linker-mediated interactions direct the self-assembly of colloids into equilibrium crystal structures. Furthermore, we demonstrate how different linker sequences and concentrations produce different crystal lattices, whose symmetry and compositional order are encoded exclusively by the linker-mediated interactions. These results illustrate how linkers can be used to separate the assembly instructions, encoded in the linkers, from the colloids themselves. We also examine the phase behavior of asymmetric linkers, which bind more strongly to one colloidal species than the other. We find that asymmetry strongly influences the concentration dependence of the colloidal interactions, which we explain using a mean-field model. We also find evidence that asymmetric linkers might help to reduce kinetic bottlenecks to colloidal crystallization. Together, our findings expand the design rules of linker-mediated self-assembly and make connections between the various schemes for programming assembly of DNA-coated colloids reported in the literature.


Assuntos
Coloides , DNA , Cristalização , DNA/genética , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...