Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Clin Exp Immunol ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700066

RESUMO

Natural killer (NK) cells include different subsets with diverse effector capacities that are poorly understood in the context of parasitic diseases. Here, we investigated inhibitory and activating receptor expression on NK cells in patients with cutaneous leishmaniasis (CL) and explored their phenotypic and functional heterogeneity based on CD57 and NKG2C expression. The expression of CD57 identified NK cells that accumulated in CL patients and exhibited features of senescence. The CD57+ cells exhibited heightened levels of the activating receptor NKG2C and diminished expression of the inhibitory receptor NKG2A. RNA sequencing analyses based on NKG2C transcriptome have revealed two distinct profiles among CL patients associated with cytotoxic and functional genes. The CD57+NKG2C+ subset accumulated in the blood of patients and presented conspicuous features of senescence, including the expression of markers such as p16, yH2ax, and p38, as well as reduced proliferative capacity. In addition, they positively correlated with the number of days until lesion resolution. This study provides a broad understanding of the NK cell biology during Leishmania infection and reinforces the role of senescent cells in the adverse clinical outcomes of cutaneous leishmaniasis.

2.
Exp Neurol ; 374: 114714, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325653

RESUMO

Traumatic brain injury (TBI) is a leading cause of disability and increases the risk of developing neurodegenerative diseases. The mechanisms linking TBI to neurodegeneration remain to be defined. It has been proposed that the induction of cellular senescence after injury could amplify neuroinflammation and induce long-term tissue changes. The induction of a senescence response post-injury in the immature brain has yet to be characterised. We carried out two types of brain injury in juvenile CD1 mice: invasive TBI using controlled cortical impact (CCI) and repetitive mild TBI (rmTBI) using weight drop injury. The analysis of senescence-related signals showed an increase in γH2AX-53BP1 nuclear foci, p53, p19ARF, and p16INK4a expression in the CCI group, 5 days post-injury (dpi). At 35 days, the difference was no longer statistically significant. Gene expression showed the activation of different senescence pathways in the ipsilateral and contralateral hemispheres in the injured mice. CCI-injured mice showed a neuroinflammatory early phase after injury (increased Iba1 and GFAP expression), which persisted for GFAP. After CCI, there was an increase at 5 days in p16INK4, whereas in rmTBI, a significant increase was seen at 35 dpi. Both injuries caused a decrease in p21 at 35 dpi. In rmTBI, other markers showed no significant change. The PCR array data predicted the activation of pathways connected to senescence after rmTBI. These results indicate the induction of a complex cellular senescence and glial reaction in the immature mouse brain, with clear differences between an invasive brain injury and a repetitive mild injury.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Lesões Encefálicas , Camundongos , Animais , Concussão Encefálica/complicações , Doenças Neuroinflamatórias , Lesões Encefálicas Traumáticas/complicações , Senescência Celular , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
5.
Artigo em Inglês | MEDLINE | ID: mdl-36323511

RESUMO

BACKGROUND AND OBJECTIVES: Aging is known to exacerbate neuroinflammation, and in the neurodegenerative disorder amyotrophic lateral sclerosis (ALS), an older age is associated with a worse prognosis. We have previously shown the activation of cell senescence pathways in the proteome of peripheral blood mononuclear cells and the increase of proinflammatory cytokines in blood from individuals living with ALS. In this single-center, retrospective study, we investigated the expression of senescent-like blood mononuclear cells in ALS. METHODS: We first applied multidimensional cytometry by time-of-flight (CyTOF) to study the senescent immunophenotype of blood mononuclear cells from 21 patients with ALS and 10 healthy controls (HCs). We then used targeted flow cytometry (FC) to investigate frequencies of senescent blood lymphocytes in 40 patients with ALS and 20 HCs. Longitudinal analysis included 2 additional time points in 17 patients with ALS. Frequencies of senescent-like lymphocytes were analyzed in relation to survival. RESULTS: Unsupervised clustering of CyTOF data showed higher frequencies of senescent CD4+CD27-CD57+ T cells in patients with ALS compared with those in HCs (p = 0.0017, false discovery (FDR)-adjusted p = 0.029). Moderate to strong negative correlations were identified between CD4 T central memory-cell frequencies and survival (R = -061, p = 0.01; FDR-adjusted p < 0.1) and between CD95 CD8 cells and ALS functional rating scale revised at baseline (R = -0.72, p = 0.001; FDR-adjusted p < 0.1).Targeted FC analysis showed higher memory T regulatory cells (p = 0.0052) and memory CD8+ T cell (M-Tc; p = 0.0006) in bulbar ALS (A-B) compared with those in limb ALS (A-L), while late memory B cells (LM-B) were also elevated in A-B and fast-progressing ALS (p = 0.0059). Higher M-Tc levels separated A-B from A-L (AUC: 0.887; p < 0.0001). A linear regression model with prespecified clinical independent variables and neurofilament light chain plasma concentration showed that higher frequencies of LM-B predicted a shorter survival (hazard ratio: 1.094, CI: 1.026-1.167; p = 0.006). DISCUSSION: Our data suggest that a systemic elevation of senescent and late memory T and B lymphocytes is a feature of faster progressing ALS and of ALS individuals with bulbar involvement. Lymphocyte senescence and their memory state may be central to the immune dysregulation known to drive disease progression in ALS and a target for biomarkers and therapeutics discovery.


Assuntos
Esclerose Lateral Amiotrófica , Humanos , Esclerose Lateral Amiotrófica/genética , Leucócitos Mononucleares , Estudos Retrospectivos , Progressão da Doença , Linfócitos T CD4-Positivos
6.
Front Immunol ; 13: 990794, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311757

RESUMO

The immune system protects from infections and cancer through complex cellular networks. For this purpose, immune cells require well-developed mechanisms of energy generation. However, the immune system itself can also cause diseases when defective regulation results in the emergence of autoreactive lymphocytes. Recent studies provide insights into how differential patterns of immune cell responses are associated with selective metabolic pathways. This review will examine the changing metabolic requirements of Th17 cells and of B cells at different stages of their development and activation. Both cells provide protection but can also mediate diseases through the production of autoantibodies and the production of proinflammatory mediators. In health, B cells produce antibodies and cytokines and present antigens to T cells to mount specific immunity. Th17 cells, on the other hand, provide protection against extra cellular pathogens at mucosal surfaces but can also drive chronic inflammation. The latter cells can also promote the differentiation of B cells to plasma cells to produce more autoantibodies. Metabolism-regulated checkpoints at different stages of their development ensure the that self-reactive B cells clones and needless production of interleukin (IL-)17 are limited. The metabolic regulation of the two cell types has some similarities, e.g. the utility of hypoxia induced factor (HIF)1α during low oxygen tension, to prevent autoimmunity and regulate inflammation. There are also clear differences, as Th17 cells only are vulnerable to the lack of certain amino acids. B cells, unlike Th17 cells, are also dependent of mechanistic target of rapamycin 2 (mTORC2) to function. Significant knowledge has recently been gained, particularly on Th17 cells, on how metabolism regulates these cells through influencing their epigenome. Metabolic dysregulation of Th17 cells and B cells can lead to chronic inflammation. Disease associated alterations in the genome can, in addition, cause dysregulation to metabolism and, thereby, result in epigenetic alterations in these cells. Recent studies highlight how pathology can result from the cooperation between the two cell types but only few have so far addressed the key metabolic alterations in such settings. Knowledge of the impact of metabolic dysfunction on chronic inflammation and pathology can reveal novel therapeutic targets to treat such diseases.


Assuntos
Autoimunidade , Células Th17 , Humanos , Linfócitos B , Inflamação , Autoanticorpos
7.
Int J Mol Sci ; 23(6)2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328793

RESUMO

Monocytes expressing the inflammation suppressing active CD11b, a beta2 integrin, may regulate neuroinflammation and modify clinical outcomes in amyotrophic lateral sclerosis (ALS). In this single site, retrospective study, peripheral blood mononuclear cells from 38 individuals living with ALS and 20 non-neurological controls (NNC) were investigated using flow cytometry to study active CD11b integrin classical (CM), intermediate (IM) and non-classical (NCM) monocytes during ALS progression. Seventeen ALS participants were sampled at the baseline (V1) and at two additional time points (V2 and V3) for longitudinal analysis. Active CD11b+ CM frequencies increased steeply between the baseline and V3 (ANOVA repeated measurement, p < 0.001), and the V2/V1 ratio negatively correlated with the disease progression rate, similar to higher frequencies of active CD11b+ NCM at the baseline (R = −0.6567; p = 0.0031 and R = 0.3862; p = 0.0168, respectively). CD11b NCM, clinical covariates and neurofilament light-chain plasma concentration at the baseline predicted shorter survival in a multivariable and univariate analysis (CD11b NCM­HR: 1.05, CI: 1.01−1.11, p = 0.013. Log rank: above median: 43 months and below median: 21.22 months; p = 0.0022). Blood samples with the highest frequencies of active CD11b+ IM and NCM contained the lowest concentrations of soluble CD11b. Our preliminary data suggest that the levels of active CD11b+ monocytes and NCM in the blood predict different clinical outcomes in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Biomarcadores , Progressão da Doença , Humanos , Leucócitos Mononucleares , Monócitos , Estudos Retrospectivos
8.
Front Pharmacol ; 12: 716517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690759

RESUMO

Inflammation is well understood to be a physiological process of ageing however it also underlies many chronic diseases, including conditions without an obvious pathogenic inflammatory element. Recent findings have unequivocally identified type 2 diabetes (T2D) as a chronic inflammatory disease characterized by inflammation and immune senescence. Immunosenescence is a hallmark of the prolonged low-grade systemic inflammation, in particular associated with metabolic syndrome and can be a cause as well as a consequence of T2D. Diabetes is a risk factor for cardiovascular mortality and remodelling and with particular changes to myocardial structure, function, metabolism and energetics collectively resulting in diabetic cardiomyopathy. Both cardiomyocytes and immune cells undergo metabolic remodelling in T2D and as a result become trapped in a vicious cycle of lost metabolic flexibility, thus losing their key adaptive mechanisms to dynamic changes in O2 and nutrient availability. Immunosenescence driven by metabolic stress may be both the cause and key contributing factor to cardiac dysfunction in diabetic cardiomyopathy by inducing metabolic perturbations that can lead to impaired energetics, a strong predictor of cardiac mortality. Here we review our current understanding of the cross-talk between inflammaging and cardiomyocytes in T2D cardiomyopathy. We discuss potential mechanisms of metabolic convergence between cell types which, we hypothesize, might tip the balance between resolution of the inflammation versus adverse cardiac metabolic remodelling in T2D cardiomyopathy. A better understanding of the multiple biological paradigms leading to T2D cardiomyopathy including the immunosenescence associated with inflammaging will provide a powerful target for successful therapeutic interventions.

10.
Nat Commun ; 12(1): 3379, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099719

RESUMO

GATA3 is as a lineage-specific transcription factor that drives the differentiation of CD4+ T helper 2 (Th2) cells, but is also involved in a variety of processes such as immune regulation, proliferation and maintenance in other T cell and non-T cell lineages. Here we show a mechanism utilised by CD4+ T cells to increase mitochondrial mass in response to DNA damage through the actions of GATA3 and AMPK. Activated AMPK increases expression of PPARG coactivator 1 alpha (PPARGC1A or PGC1α protein) at the level of transcription and GATA3 at the level of translation, while DNA damage enhances expression of nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2). PGC1α, GATA3 and NRF2 complex together with the ATR to promote mitochondrial biogenesis. These findings extend the pleotropic interactions of GATA3 and highlight the potential for GATA3-targeted cell manipulation for intervention in CD4+ T cell viability and function after DNA damage.


Assuntos
Linfócitos T CD4-Positivos/citologia , Dano ao DNA , Fator de Transcrição GATA3/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Proteínas Quinases Ativadas por AMP/metabolismo , Adulto , Linfócitos T CD4-Positivos/metabolismo , Sobrevivência Celular/genética , Células Cultivadas , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Cultura Primária de Células
12.
Br J Anaesth ; 127(1): 32-40, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33795133

RESUMO

BACKGROUND: In the general adult population, lymphopaenia is associated with an increased risk for hospitalisation with infection and infection-related death. The quality of evidence and strength of association between perioperative lymphopaenia across different surgical procedures and mortality/morbidity has not been examined by systematic review or meta-analysis. METHODS: We searched MEDLINE, Embase, Web of Science, Google Scholar, and Cochrane databases from their inception to June 29, 2020 for observational studies reporting lymphocyte count and in-hospital mortality rate in adults. We defined preoperative lymphopaenia as a lymphocyte count 1.0-1.5×109 L-1. Meta-analysis was performed using either fixed or random effects models. Quality was assessed using the Newcastle-Ottawa Scale. The I2 index was used to quantify heterogeneity. The primary outcome was in-hospital mortality rate and mortality rate at 30 days. RESULTS: Eight studies met the inclusion criteria for meta-analysis, comprising 4811 patients (age range, 46-91 yr; female, 20-79%). These studies examined preoperative lymphocyte count exclusively. Studies were of moderate to high quality overall, ranking >7 using the Newcastle-Ottawa Scale. Preoperative lymphopaenia was associated with a threefold increase in mortality rate (risk ratio [RR]=3.22; 95% confidence interval [CI], 2.19-4.72; P<0.01, I2=0%) and more frequent major postoperative complications (RR=1.33; 95% CI, 1.21-1.45; P<0.01, I2=6%), including cardiovascular morbidity (RR=1.77; 95% CI, 1.45-2.15; P<0.01, I2=0%), infections (RR=1.45; 95% CI, 1.19-1.76; P<0.01, I2=0%), and acute renal dysfunction (RR=2.66; 95% CI, 1.49-4.77; P<0.01, I2=1%). CONCLUSION: Preoperative lymphopaenia is associated with death and complications more frequently, independent of the type of surgery. PROSPERO REGISTRY NUMBER: CRD42020190702.


Assuntos
Procedimentos Cirúrgicos Eletivos/mortalidade , Mortalidade Hospitalar , Linfopenia/mortalidade , Linfopenia/cirurgia , Complicações Pós-Operatórias/mortalidade , Cuidados Pré-Operatórios/mortalidade , Procedimentos Cirúrgicos Eletivos/efeitos adversos , Procedimentos Cirúrgicos Eletivos/tendências , Mortalidade Hospitalar/tendências , Humanos , Morbidade/tendências , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Cuidados Pré-Operatórios/métodos , Cuidados Pré-Operatórios/tendências , Estudos Prospectivos
13.
Front Aging ; 2: 681428, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35821991

RESUMO

Mitochondrial health and cellular metabolism can heavily influence the onset of senescence in T cells. CD8+ EMRA T cells exhibit mitochondrial dysfunction and alterations to oxidative phosphorylation, however, the metabolic properties of senescent CD8+ T cells from people living with type 2 diabetes (T2D) are not known. We show here that mitochondria from T2D CD8+ T cells had a higher oxidative capacity together with increased levels of mitochondrial reactive oxgen species (mtROS), compared to age-matched control cells. While fatty acid uptake was increased, fatty acid oxidation was impaired in T2D CD8+ EMRA T cells, which also showed an accumulation of lipid droplets and decreased AMPK activity. Increasing glucose and fatty acids in healthy CD8+ T cells resulted in increased p-p53 expression and a fragmented mitochondrial morphology, similar to that observed in T2D CD8+ EMRA T cells. The resulting mitochondrial changes are likely to have a profound effect on T cell function. Consequently, a better understanding of these metabolic abnormalities is crucial as metabolic manipulation of these cells may restore correct T cell function and help reduce the impact of T cell dysfunction in T2D.

14.
Front Cell Dev Biol ; 8: 564461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33163486

RESUMO

Chronic kidney disease (CKD) presents an ever-growing disease burden for the world's aging population. It is characterized by numerous changes to the kidney, including a decrease in renal mass, renal fibrosis, and a diminished glomerular filtration rate. The premature aging phenotype observed in CKD is associated with cellular senescence, particularly of renal tubular epithelial cells (TECs), which contributes to chronic inflammation through the production of a proinflammatory senescence associated secretory phenotype (SASP). When coupled with changes in immune system composition and progressive immune dysfunction, the accumulation of senescent kidney cells acts as a driver for the progression of CKD. The targeting of senescent cells may well present an attractive therapeutic avenue for the treatment of CKD. We propose that the targeting of senescent cells either by direct inhibition of pro-survival pathways (senolytics) or through the inhibition of their proinflammatory secretory profile (senomorphics) together with immunomodulation to enhance immune system surveillance of senescent cells could be of benefit to patients with CKD.

15.
Immunometabolism ; 2(4): e200035, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33101729

RESUMO

We review here the seminal findings of Desdin-Mico et al. showing that T cells with dysfunctional mitochondria induce multimorbity and premature senescence, due to mitochondrial transcription factor A (TFAM). They add further weight to the idea that targeting immunometabolism could be beneficial in combating the detrimental effects of age-related disease.

16.
Ind Eng Chem Res ; 59(24): 11099-11112, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32565616

RESUMO

Instant coffee manufacture involves the aqueous extraction of soluble coffee components followed by drying to form a soluble powder. Loss of volatile aroma compounds during concentration through evaporation can lower product quality. One method of retaining aroma is to steam-strip volatiles from the coffee and add them back to a concentrated coffee solution before the final drying stage. A better understanding of the impact of process conditions on the aroma content of the stripped solution will improve product design stages. In this context, we present a multiscale model for aroma extraction describing (i) the release from the matrix, (ii) intraparticle diffusion, (iii) transfer into water and steam, and (iv) advection through the column mechanisms. Results revealed (i) the existence of three different types of compound behavior, (ii) how aroma physiochemistry determines the limiting kinetics of extraction, and (iii) that extraction for some aromas can be inhibited by the interaction with other coffee components.

18.
Nat Immunol ; 21(6): 684-694, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32231301

RESUMO

Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Senescência Celular/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Proteínas Nucleares/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Nucleares/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais , Febre Amarela/genética , Febre Amarela/imunologia , Febre Amarela/metabolismo , Febre Amarela/virologia , Vírus da Febre Amarela/imunologia
19.
J Invest Dermatol ; 140(4): 806-815.e5, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31518559

RESUMO

The skin is our interface with the outside world, and consequently it is exposed to a wide range of microbes and allergens. Recent studies have indicated that allergen-specific skin-resident memory T (TRM) cells play a role in allergic contact dermatitis (ACD). However, the composition and dynamics of the epidermal T-cell subsets during ACD are not known. Here we show that exposure of the skin to the experimental contact allergen DNFB results in a displacement of the normally occurring dendritic epidermal T cells (DETC) concomitant with an accumulation of epidermal CD8+CD69+CD103+ TRM cells in mice. By studying knockout mice, we provide evidence that CD8+ T cells are required for the displacement of the DETC and that DETC are not required for recruitment of CD8+ TRM cells to the epidermis following allergen exposure. We demonstrate that the magnitude of the allergic reaction correlates with the number of CD8+ epidermal TRM cells, which again correlates with allergen dose and number of allergen exposures. Finally, in an attempt to elucidate why CD8+ epidermal TRM cells persist in the epidermis, we show that CD8+ epidermal TRM cells have a higher proliferative capability and are bioenergetically more stable, displaying a higher spare respiratory capacity than DETC.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Dermatite Alérgica de Contato/imunologia , Memória Imunológica , Animais , Linfócitos T CD8-Positivos/patologia , Células Dendríticas/patologia , Dermatite Alérgica de Contato/patologia , Modelos Animais de Doenças , Epiderme/patologia , Camundongos , Camundongos Knockout
20.
Aging Cell ; 19(2): e13067, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31788930

RESUMO

The susceptibility of human CD4+ and CD8+ T cells to senesce differs, with CD8+ T cells acquiring an immunosenescent phenotype faster than the CD4+ T cell compartment. We show here that it is the inherent difference in mitochondrial content that drives this phenotype, with senescent human CD4+ T cells displaying a higher mitochondrial mass. The loss of mitochondria in the senescent human CD8+ T cells has knock-on consequences for nutrient usage, metabolism and function. Senescent CD4+ T cells uptake more lipid and glucose than their CD8+ counterparts, leading to a greater metabolic versatility engaging either an oxidative or a glycolytic metabolism. The enhanced metabolic advantage of senescent CD4+ T cells allows for more proliferation and migration than observed in the senescent CD8+ subset. Mitochondrial dysfunction has been linked to both cellular senescence and aging; however, it is still unclear whether mitochondria play a causal role in senescence. Our data show that reducing mitochondrial function in human CD4+ T cells, through the addition of low-dose rotenone, causes the generation of a CD4+ T cell with a CD8+ -like phenotype. Therefore, we wish to propose that it is the inherent metabolic stability that governs the susceptibility to an immunosenescent phenotype.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Senescência Celular/imunologia , Imunossenescência/fisiologia , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Adulto , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/fisiologia , Linfócitos T CD8-Positivos/fisiologia , Movimento Celular/imunologia , Proliferação de Células/fisiologia , Senescência Celular/fisiologia , Glucose/metabolismo , Glicólise/imunologia , Humanos , Antígenos Comuns de Leucócito/sangue , Antígenos Comuns de Leucócito/metabolismo , Microscopia Eletrônica de Transmissão , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Mitocôndrias/ultraestrutura , Rotenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...