Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol ; 7(3): 185-96, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10712932

RESUMO

BACKGROUND: Porphobilinogen synthase is the second enzyme involved in the biosynthesis of natural tetrapyrrolic compounds, and condenses two molecules of 5-aminolevulinic acid (ALA) through a nonsymmetrical pathway to form porphobilinogen. Each substrate is recognized individually at two different active site positions to be regioselectively introduced into the product. According to pulse-labeling experiments, the substrate forming the propionic acid sidechain of porphobilinogen is recognized first. Two different mechanisms for the first bond-forming step between the two substrates have been proposed. The first involves carbon-carbon bond formation (an aldol-type reaction) and the second carbon-nitrogen bond formation, leading to an iminium ion. RESULTS: With the help of kinetic studies, we determined the Michaelis constants for each substrate recognition site. These results explain the Michaelis-Menten behavior of substrate analog inhibitors - they act as competitive inhibitors. Under standard conditions, however, another set of inhibitors demonstrates uncompetitive, mixed, pure irreversible, slow-binding or even quasi-irreversible inhibition behavior. CONCLUSIONS: Analysis of the different classes of inhibition behavior allowed us to make a correlation between the type of inhibition and a specific site of interaction. Analyzing the inhibition behavior of analogs of postulated intermediates strongly suggests that carbon-nitrogen bond formation occurs first.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Sintase do Porfobilinogênio/antagonistas & inibidores , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Ligação Competitiva , Domínio Catalítico , Ácidos Dicarboxílicos/síntese química , Ácidos Dicarboxílicos/química , Ácidos Dicarboxílicos/farmacologia , Inibidores Enzimáticos/síntese química , Cinética , Modelos Químicos , Porfobilinogênio/química , Porfobilinogênio/metabolismo , Sintase do Porfobilinogênio/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
2.
Arch Biochem Biophys ; 374(2): 107-17, 2000 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-10666288

RESUMO

Bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the copper-, ascorbate-, and O(2)-dependent cleavage of C-terminal glycine-extended peptides and N-acylglycines to the corresponding amides and glyoxylate. The alpha-amidated peptides and the long-chain acylamides are hormones in humans and other mammals. Bile acid glycine conjugates are also substrates for PAM leading to the formation of bile acid amides. The (V(MAX)/K(m))(app) values for the bile acid glycine conjugates are comparable to other known PAM substrates. The highest (V(MAX)/K(m))(app) value, 3.1 +/- 0.12 x 10(5) M(-1) s(-1) for 3-sulfolithocholylglycine, is 6.7-fold higher than that for d-Tyr-Val-Gly, a representative peptide substrate. The time course for O(2) consumption and glyoxylate production indicates that bile acid glycine conjugate amidation is a two-step reaction. The bile acid glycine conjugate is first converted to an N-bile acyl-alpha-hydroxyglycine intermediate which is ultimately dealkylated to the bile acid amide and glyoxylate. The enzymatically produced bile acid amides and the carbinolamide intermediates were characterized by mass spectrometry and two-dimensional (1)H-(13)C heteronuclear multiple quantum coherence NMR.


Assuntos
Ácidos e Sais Biliares/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos , Glioxilatos/metabolismo , Cinética , Oligopeptídeos/metabolismo , Consumo de Oxigênio , Especificidade por Substrato
3.
Biochemistry ; 38(47): 15438-47, 1999 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-10569926

RESUMO

Carnobacteriocin B2 (CbnB2), a type IIa bacteriocin, is a 48 residue antimicrobial peptide from the lactic acid bacterium Carnobacterium pisicola LV17B. Type IIa bacteriocins have a conserved YGNGVXC sequence near the N-terminus and usually contain a disulfide bridge. CbnB2 seemed to be unique in that its two cysteines (Cys9 and Cys14) could be isolated as free thiols [Quadri et al. (1994) J. Biol. Chem. 26, 12204-12211]. To establish the structural consequences of the presence or absence of a disulfide bridge and to investigate if the YGNGVXC sequence is a receptor-binding motif [Fleury et al. (1996) J. Biol. Chem. 271, 14421-14429], the three-dimensional solution structure of CbnB2 was determined by two-dimensional (1)H nuclear magnetic resonance (NMR) techniques. Mass spectroscopic and thiol modification experiments on CbnB2 and on model peptides, in conjunction with activity measurements, were used to verify the redox status of CbnB2. The results show that CbnB2 readily forms a disulfide bond and that this peptide has full antimicrobial activity. NMR results indicate that CbnB2 in trifluoroethanol (TFE) has a well-defined central helical structure (residues 18-39) but a disordered N terminus. Comparison of the CbnB2 structure with the refined solution structure of leucocin A (LeuA), another type IIa bacteriocin, indicates that the central helical structure is conserved between the two peptides despite differences in sequence but that the N-terminal structure (a proposed receptor binding site) is not. This is unexpected because LeuA and CbnB2 exhibit >66% sequence identity in the first 24 residues. This suggests that the N-terminus, which had been proposed [Fleury et al. (1996) J. Biol. Chem. 271, 14421-14429] to be a receptor binding site of type IIa bacteriocins, may not be directly involved and that recognition of the amphiphilic helical portion is the critical feature.


Assuntos
Proteínas de Bactérias/química , Bacteriocinas/química , Bactérias Gram-Positivas/química , Ácido Láctico/química , Homologia de Sequência de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Bacteriocinas/metabolismo , Ácidos Carboxílicos/química , Ácidos Carboxílicos/metabolismo , Cristalografia por Raios X , Bactérias Gram-Positivas/metabolismo , Ácido Láctico/metabolismo , Leuconostoc/química , Leuconostoc/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Conformação Proteica , Estrutura Secundária de Proteína , Soluções , Relação Estrutura-Atividade
4.
Biochemistry ; 38(11): 3235-45, 1999 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-10079066

RESUMO

Bifunctional peptidylglycine alpha-amidating enzyme (alpha-AE) catalyzes the O2-dependent conversion of C-terminal glycine-extended prohormones to the active, C-terminal alpha-amidated peptide and glyoxylate. We show that alpha-AE will also catalyze the oxidative cleavage of N-acylglycines, from N-formylglycine to N-arachidonoylglycine. N-Formylglycine is the smallest amide substrate yet reported for alpha-AE. The (V/K)app for N-acylglycine amidation varies approximately 1000-fold, with the (V/K)app increasing as the acyl chain length increases. This effect is largely an effect on the KM,app; the KM,app for N-formylglycine is 23 +/- 0.88 mM, while the KM,app for N-lauroylglycine and longer chain N-acylglycines is in the range of 60-90 microM. For the amidation of N-acetylglycine, N-(tert-butoxycarbonyl)glycine, N-hexanoylglycine, and N-oleoylglycine, the rate of O2 consumption is faster than the rate of glyoxylate production. These results indicate that there must be the initial formation of an oxidized intermediate from the N-acylglycine before glyoxylate is produced. The intermediate is shown to be N-acyl-alpha-hydroxyglycine by two-dimensional 1H-13C heteronuclear multiple quantum coherence (HMQC) NMR.


Assuntos
Amidas/metabolismo , Ácidos Graxos/biossíntese , Glicina/análogos & derivados , Glicina/metabolismo , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos , Ácidos Oleicos/metabolismo , Adulto , Animais , Catálise , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Feminino , Glicina/farmacologia , Glioxilatos/metabolismo , Humanos , Cinética , Oxigenases de Função Mista/antagonistas & inibidores , Oxigenases de Função Mista/sangue , Ácidos Oleicos/farmacologia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...