Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 12(6)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38932406

RESUMO

Approved COVID-19 vaccines primarily induce neutralizing antibodies targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike (S) protein. However, the emergence of variants of concern with RBD mutations poses challenges to vaccine efficacy. This study aimed to design a next-generation vaccine that provides broader protection against diverse coronaviruses, focusing on glycan-free S2 peptides as vaccine candidates to overcome the low immunogenicity of the S2 domain due to the N-linked glycans on the S antigen stalk, which can mask S2 antibody responses. Glycan-free S2 peptides were synthesized and attached to SARS-CoV-2 virus-like particles (VLPs) lacking the S antigen. Humoral and cellular immune responses were analyzed after the second booster immunization in BALB/c mice. Enzyme-linked immunosorbent assay revealed the reactivity of sera against SARS-CoV-2 variants, and pseudovirus neutralization assay confirmed neutralizing activities. Among the S2 peptide-conjugated VLPs, the S2.3 (N1135-K1157) and S2.5 (A1174-L1193) peptide-VLP conjugates effectively induced S2-specific serum immunoglobulins. These antisera showed high reactivity against SARS-CoV-2 variant S proteins and effectively inhibited pseudoviral infections. S2 peptide-conjugated VLPs activated SARS-CoV-2 VLP-specific T-cells. The SARS-CoV-2 vaccine incorporating conserved S2 peptides and CoV-2 VLPs shows promise as a universal vaccine capable of generating neutralizing antibodies and T-cell responses against SARS-CoV-2 variants.

2.
Front Immunol ; 14: 1307693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143750

RESUMO

Introduction: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), had a major impact on both the global health and economy. Numerous virus-neutralizing antibodies were developed against the S1 subunit of SARS-CoV-2 spike (S) protein to block viral binding to host cells and were authorized for control of the COVID-19 pandemic. However, frequent mutations in the S1 subunit of SARS-CoV-2 enabled the emergence of immune evasive variants. To address these challenges, broadly neutralizing antibodies targeting the relatively conserved S2 subunit and its epitopes have been investigated as antibody therapeutics and universal vaccines. Methods: We initiated this study by immunizing BALB/c mice with ß-propiolactone-inactivated SARS-CoV-2 (IAV) to generate B-cell hybridomas. These hybridomas were subsequently screened using HEK293T cells expressing the S2-ECD domain. Hybridomas that produced anti-S2 antibodies were selected, and we conducted a comprehensive evaluation of the potential of these anti-S2 antibodies as antiviral agents and versatile tools for research and diagnostics. Results: In this study, we present a novel S2-specific antibody, 4A5, isolated from BALB/c mice immunized with inactivated SARS-CoV-2. 4A5 exhibited specific affinity to SARS-CoV-2 S2 subunits compared with those of other ß-CoVs. 4A5 bound to epitope segment F1109-V1133 between the heptad-repeat1 (HR1) and the stem-helix (SH) region. The 4A5 epitope is highly conserved in SARS-CoV-2 variants, with a significant conformational feature in both pre- and postfusion S proteins. Notably, 4A5 exhibited broad neutralizing activity against variants and triggered Fc-enhanced antibody-dependent cellular phagocytosis. Discussion: These findings offer a promising avenue for novel antibody therapeutics and insights for next-generation vaccine design. The identification of 4A5, with its unique binding properties and broad neutralizing capacity, offers a potential solution to the challenge posed by SARS-CoV-2 variants and highlights the importance of targeting the conserved S2 subunit in combating the COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Pandemias , Células HEK293 , Epitopos
3.
Sens Actuators B Chem ; 380: 133331, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36644652

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has threatened public health globally, and the emergence of viral variants has exacerbated an already precarious situation. To prevent further spread of the virus and determine government action required for virus control, accurate and rapid immunoassays for SARS-CoV-2 diagnosis are urgently needed. In this study, we generated monoclonal antibodies (mAbs) against the SARS-CoV-2 nucleocapsid protein (NP), compared their reactivity using an enzyme-linked immunosorbent assay (ELISA), and selected four mAbs designated 1G6, 3E10, 3F10, and 5B6 which have higher reactivity to NP and viral lysates of SARS-CoV-2 than other mAbs. Using an epitope mapping assay, we identified that 1G6 detected the C-terminal domain of SARS-CoV-2 NP (residues 248-364), while 3E10 and 3F10 bound to the N-terminal domain (residues 47-174) and 3F10 detected the N-arm region (residues 1-46) of SARS-CoV-2 NP. Based on the epitope study and sandwich ELISA, we selected the 1G6 and 3E10 Abs as an optimal Ab pair and applied them for a microfluidics-based point-of-care (POC) ELISA assay to detect the NPs of SARS-CoV-2 and its variants. The integrated and automatic microfluidic system could operate the serial injection of the sample, the washing solution, the HRP-conjugate antibody, and the TMB substrate solution simply by controlling air purge via a single syringe. The proposed Ab pair-equipped microsystem effectively detected the NPs of SARS-CoV-2 variants as well as in clinical samples. Collectively, our proposed platform provides an advanced protein-based diagnostic tool for detecting SARS-CoV-2.

4.
Int J Oncol ; 61(6)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36321789

RESUMO

Tumor­associated (TA) autoantibodies are considered to be promising biomarkers for the early detection of cancer, prior to the development of clinical symptoms. In the present study, a novel TA autoantibody was detected, which may prove to be useful as a diagnostic marker of human HCC using an HBx­transgenic (HBx­tg) hepatocellular carcinoma (HCC) mouse model. Its target antigen was identified as the bromodomain­containing protein 2 (BRD2), a transcriptional regulator that plays a pivotal role in the transcriptional control of diverse genes. BRD2 was upregulated in HCC tissues of the H­ras12V­tg mouse and human subjects, as demonstrated using western blotting or immunohistochemical analysis, with the BRD2 autoantibody. In addition, the truncated BRD2 reactive to the BRD2 autoantibody was detected in tumor cell­derived exosomes, which possibly activated TA immune responses and the generation of autoantibodies. For the detection of the serum BRD2 autoantibody, epitope mimicries of autoantigenic BRD2 were screened from a random cyclic peptide CX7C library with the BRD2 autoantibody. A mimotope with the sequence of CTSVFLPHC, which was cyclized by one pair of cysteine residues, exhibited high affinity to the BRD2 autoantibody and competitively inhibited the binding of the autoantibody to the cellular BRD2 antigen. The use of this cyclic peptide as a capture antigen in human serum enzyme­linked immunosorbent assay allowed the distinction of patients with HCC from healthy subjects with 64.41% sensitivity and 82.42% specificity (area under the ROC curve, 0.7761), which is superior to serum alpha­fetoprotein (AFP; 35.83% sensitivity; 100% specificity; area under the ROC curve, 0.5337) for the diagnosis of HCC. In addition, the detection of the BRD2 autoantibody combined with other autoantibody biomarkers or AFP has increased the accuracy of HCC diagnosis, suggesting that the combinational detection of cancer biomarkers, including the BRD2 autoantibody, is a promising assay for HCC diagnosis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , alfa-Fetoproteínas , Autoanticorpos , Biomarcadores Tumorais , Peptídeos , Camundongos Transgênicos , Curva ROC , Peptídeos Cíclicos , Fatores de Transcrição
5.
Commun Biol ; 4(1): 778, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163000

RESUMO

Cancer stem cells (CSCs) are regarded as essential targets to overcome tumor progression and therapeutic resistance; however, practical targeting approaches are limited. Here, we identify testis-specific Y-like protein 5 (TSPYL5) as an upstream regulator of CSC-associated genes in non-small cell lung cancer cells, and suggest as a therapeutic target for CSC elimination. TSPYL5 elevation is driven by AKT-dependent TSPYL5 phosphorylation at threonine-120 and stabilization via inhibiting its ubiquitination. TSPYL5-pT120 also induces nuclear translocation and functions as a transcriptional activator of CSC-associated genes, ALDH1 and CD44. Also, nuclear TSPYL5 suppresses the transcription of PTEN, a negative regulator of PI3K signaling. TSPYL5-pT120 maintains persistent CSC-like characteristics via transcriptional activation of CSC-associated genes and a positive feedback loop consisting of AKT/TSPYL5/PTEN signaling pathway. Accordingly, elimination of TSPYL5 by inhibiting TSPYL5-pT120 can block aberrant AKT/TSPYL5/PTEN cyclic signaling and TSPYL5-mediated cancer stemness regulation. Our study suggests TSPYL5 be an effective target for therapy-resistant cancer.


Assuntos
Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , PTEN Fosfo-Hidrolase/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transporte Ativo do Núcleo Celular , Animais , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Feminino , Gefitinibe/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Terapia de Alvo Molecular , Proteínas Nucleares/fisiologia , PTEN Fosfo-Hidrolase/fisiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
6.
Int J Mol Sci ; 21(24)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352757

RESUMO

Tumor-associated (TA) autoantibodies have been identified at the early tumor stage before developing clinical symptoms, which holds hope for early cancer diagnosis. We identified a TA autoantibody from HBx-transgenic (HBx-tg) hepatocellular carcinoma (HCC) model mouse, characterized its target antigen, and examined its relationship to human HCC. The mimotopes corresponding to the antigenic epitope of TA autoantibody were screened from a random cyclic peptide library and used for the detection of serum TA autoantibody. The target antigen of the TA autoantibody was identified as an oncogenic bi-functional purine biosynthesis protein, ATIC. It was upregulated in liver cancer tissues of HBx-tg mouse as well as human HCC tissues. Over-expressed ATIC was also secreted extracellularly via the cancer-derived exosomes, which might cause auto-immune responses. The cyclic peptide mimotope with a high affinity to anti-ATIC autoantibody, CLPSWFHRC, distinguishes between serum samples from HCC patients and healthy subjects with 70.83% sensitivity, 90.68% specificity (AUC = 0.87). However, the recombinant human ATIC protein showed a low affinity to anti-ATIC autoantibody, which may be incompatible as a capture antigen for serum TA autoantibody. This study indicates that anti-ATIC autoantibody can be a potential HCC-associated serum biomarker and suggests that autoantibody biomarker's efficiency can be improved by using antigenic mimicry to native antigens present in vivo.


Assuntos
Autoanticorpos/sangue , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/diagnóstico , Epitopos/imunologia , Hidroximetil e Formil Transferases/imunologia , Neoplasias Hepáticas/diagnóstico , Complexos Multienzimáticos/imunologia , Nucleotídeo Desaminases/imunologia , Peptídeos Cíclicos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Autoanticorpos/imunologia , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/imunologia , Feminino , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/imunologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Biblioteca de Peptídeos , Prognóstico , Adulto Jovem
7.
Sci Rep ; 9(1): 11059, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31363116

RESUMO

Tumor-associated autoantibodies are promising diagnostic biomarkers for early detection of tumors. We have screened a novel tumor-associated autoantibody in hepatocellular carcinoma (HCC) model mice. Its target antigen was identified as eukaryotic translation initiation factor 3 subunit A (EIF3A) by proteomic analysis, and the elevated expression of EIF3A in HCC tissues of tumor model mice as well as human patients was shown. Also, its existence in tumor-derived exosomes was revealed, which seem to be the cause of tumor-associated autoantibody production. To use serum anti-EIF3A autoantibody as biomarker, ELISA detecting anti-EIF3A autoantibody in human serum was performed using autoantibody-specific epitope. For the sensitive detection of serum autoantibodies its specific conformational epitopes were screened from the random cyclic peptide library, and a streptavidin antigen displaying anti-EIF3A autoantibody-specific epitope, XC90p2(-CPVRSGFPC-), was used as capture antigen. It distinguished patients with HCC (n = 102) from healthy controls (n = 0285) with a sensitivity of 79.4% and specificity of 83.5% (AUC = 0.87). Also, by simultaneously detecting with other HCC biomarkers, including alpha-fetoprotein, HCC diagnostic sensitivity improved from 79.4% to 85%. Collectively, we suggest that serum anti-EIF3A autoantibody is a useful biomarker for the diagnosis of HCC and the combinational detection of related biomarkers can enhance the accuracy of the cancer diagnosis.


Assuntos
Autoanticorpos/sangue , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/diagnóstico , Fator de Iniciação 3 em Eucariotos/imunologia , Neoplasias Hepáticas/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/patologia , Feminino , Humanos , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade
8.
J Transl Med ; 16(1): 177, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29954402

RESUMO

BACKGROUND: Tumor-associated (TA) autoantibodies, which are generated by the immune system upon the recognition of abnormal TA antigens, are promising biomarkers for the early detection of tumors. In order to detect autoantibody biomarkers effectively, antibody-specific epitopes in the diagnostic test should maintain the specific conformations that are as close as possible to those presenting in the body. However, when using patients' serum as a source of TA autoantibodies the characterization of the autoantibody-specific epitope is not easy due to the limited amount of patient-derived serum. METHODS: To overcome these limits, we constructed a B cell hybridoma pool derived from a hepatocellular carcinoma (HCC) model HBx-transgenic mouse and characterized autoantibodies derived from them as tumor biomarkers. Their target antigens were identified by mass spectrometry and the correlations with HCC were examined. With the assumption that TA autoantibodies generated in the tumor mouse model are induced in human cancer patients, the enzyme-linked immunosorbent assays (ELISA) based on the characteristics of mouse TA autoantibodies were developed for the detection of autoantibody biomarkers in human serum. To mimic natural antigenic structures, the specific epitopes against autoantibodies were screened from the phage display cyclic random heptapeptide library, and the streptavidin antigens fused with the specific epitopes were used as coating antigens. RESULTS: In this study, one of HCC-associated autoantibodies derived from HBx-transgenic mouse, XC24, was characterized. Its target antigen was identified as splicing factor 3b subunit 1 (SF3B1) and the high expression of SF3B1 was confirmed in HCC tissues. The specific peptide epitopes against XC24 were selected and, among them, XC24p11 cyclic peptide (-CDATPPRLC-) was used as an epitope of anti-SF3B1 autoantibody ELISA. With this epitope, we could effectively distinguish between serum samples from HCC patients (n = 102) and healthy subjects (n = 85) with 73.53% sensitivity and 91.76% specificity (AUC = 0.8731). Moreover, the simultaneous detection of anti-XC24p11 epitope autoantibody and AFP enhanced the efficiency of HCC diagnosis with 87.25% sensitivity and 90.59% specificity (AUC = 0.9081). CONCLUSIONS: ELISA using XC24p11 peptide epitope that reacts against anti-SF3B1 autoantibody can be used as a novel test to enhance the diagnostic efficiency of HCC.


Assuntos
Autoanticorpos/sangue , Biomarcadores Tumorais/sangue , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/diagnóstico , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/diagnóstico , Fosfoproteínas/imunologia , Fatores de Processamento de RNA/imunologia , Sequência de Aminoácidos , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Epitopos/metabolismo , Humanos , Camundongos Transgênicos , Peptídeos/química , Fosfoproteínas/sangue , Fatores de Processamento de RNA/sangue , Estreptavidina/metabolismo , Transativadores/metabolismo , Proteínas Virais Reguladoras e Acessórias , alfa-Fetoproteínas/metabolismo
9.
J Microbiol Biotechnol ; 28(5): 809-815, 2018 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-29642295

RESUMO

Influenza, which is a highly contagious disease caused by the influenza A virus, continues to be a major health concern worldwide. Although the accurate and early diagnosis of influenza virus infection is important for controlling the spread of this disease and rapidly initiating antiviral therapy, the current influenza diagnostic kits are limited by their low sensitivity. In this study, we developed several new influenza nucleoprotein (NP)-specific monoclonal antibodies (mAbs) and compared their sensitivity and specificity of those with commercially available anti-NP mAbs. Three mAbs, designated M24.11, M34.3, and M34.33, exhibited higher reactivities to recombinant NPs and A/Puerto Rico/8/1934 (H1N1) viral lysates compared with the commercial mAbs, as assessed using enzyme-linked immunosorbent assays. M34.3 and M34.33 showed higher reactivities with A/California/04/09 (pandemic H1N1) and A/Philippines/2/82 (H3N2) viral lysates than the commercial mAbs. In contrast, M24.11 had marked reactivity with H3N2 but not with pandemic H1N1. Immunofluorescent confocal microscopy showed that the three mAbs effectively detected the presence of influenza virus in lung tissues of mice infected with A/Puerto Rico/8/1934. These results indicate that the newly developed M34.3 and M34.33 mAbs could be useful for the development of influenza diagnostics.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/diagnóstico , Nucleoproteínas/imunologia , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/metabolismo , Anticorpos Antivirais/análise , Anticorpos Antivirais/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Nucleoproteínas/análise , Nucleoproteínas/metabolismo , Infecções por Orthomyxoviridae/diagnóstico , Proteínas Recombinantes/análise , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade
10.
Int J Oncol ; 42(1): 65-74, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23128437

RESUMO

A novel circulating tumor-associated autoantibody, K94, obtained from a hepatocellular carcinoma (HCC) mouse model was characterized. The target antigen of K94 autoantibody was expressed in various tumor cell lines including liver cancer, and its secretion was detectable using MCF-7 breast carcinoma cells. Proteomic analysis revealed that the protein bands reactive to K94 included cytokeratin (CK) 8 and 18, which are known to be related to tumorigenesis and form a heterotypic complex with each other. However, K94 showed no activity toward CK8 or CK18 separately. The epitope of the K94 antibody was only presented by a complex between CK8 and CK18, which was confirmed by analysis using recombinant CK8 and CK18 proteins. To formulate an assay for anti-CK8/18 complex autoantibody, a mimotope peptide reactive to K94 was selected from loop-constrained heptapeptide (-CX7C-) display phage library, of which sequence was CISPDAHSC (K94p1). A mimotope enzyme-linked immunosorbent assay (ELISA) using phage-displayed K94p1 peptide as a coating antigen was able to discriminate breast cancer (n=30) patients from normal subjects (n=30) with a sensitivity of 50% and a specificity of 82.61%. CA15.3 was detected at very low levels in the same breast cancer subjects and did not discriminate breast cancer patients from normal subjects, although it is a conventional biomarker of breast cancer. These results suggest that a mimotope ELISA composed of K94p1 peptide may be useful for the diagnosis of breast cancer.


Assuntos
Autoanticorpos/sangue , Materiais Biomiméticos , Neoplasias da Mama/diagnóstico , Carcinoma Ductal de Mama/diagnóstico , Queratina-18/imunologia , Queratina-8/imunologia , Peptídeos Cíclicos/imunologia , Animais , Western Blotting , Neoplasias da Mama/sangue , Neoplasias da Mama/imunologia , Carcinoma Ductal de Mama/sangue , Carcinoma Ductal de Mama/imunologia , Ensaio de Imunoadsorção Enzimática , Epitopos/imunologia , Feminino , Citometria de Fluxo , Humanos , Queratina-18/antagonistas & inibidores , Queratina-18/genética , Queratina-8/antagonistas & inibidores , Queratina-8/genética , Camundongos , Microscopia de Fluorescência , Estadiamento de Neoplasias , Biblioteca de Peptídeos , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Tumorais Cultivadas
11.
BMB Rep ; 45(12): 677-85, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23261052

RESUMO

In the process of tumorigenesis, normal cells are remodeled to cancer cells and protein expression patterns are changed to those of tumor cells. A newly formed tumor microenvironment elicits the immune system and, as a result, a humoral immune response takes place. Although the tumor antigens are undetectable in sera at the early stage of tumorigenesis, the nature of an antibody amplification response to antigens makes tumor-associated autoantibodies as promising early biomarkers in cancer diagnosis. Moreover, the recent development of proteomic techniques that make neo-epitopes of tumor-associated autoantigens discovered concomitantly has opened a new area of 'immuno-proteomics', which presents tumor-associated autoantibody signatures and confers information to redefine the process of tumorigenesis. In this article, the strategies recently used to identify and validate serum autoantibodies are outlined and tumor-associated antigens suggested until now as diagnostic/prognostic biomarkers in various tumor types are reviewed. Also, the meaning of autoantibody signatures and their clinical utility in personalized medicine are discussed.


Assuntos
Autoanticorpos/sangue , Biomarcadores Tumorais/sangue , Neoplasias/diagnóstico , Autoanticorpos/imunologia , Autoantígenos/genética , Autoantígenos/imunologia , Autoantígenos/metabolismo , Humanos , Neoplasias/sangue , Neoplasias/imunologia , Prognóstico , Análise Serial de Proteínas , Proteômica
12.
Biotechnol Lett ; 33(4): 655-61, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21125414

RESUMO

Phage libraries displaying cDNA or random peptides have been used for profiling autoantibodies in cancer. The detection of autoantibodies in human sera using phages displaying specific epitopes is usually performed by phage-immobilized ELISAs which can detect specific antibodies without identification of whole antigens. However, these ELISAs can give feeble detection signals that are indistinguishable from background signals which are caused by human sera. To improve the usefulness of phage ELISA for human sera, the conditions for each step in phage ELISA were optimized. The antigenicity of phage antigens was maximal when using coating buffer of neutral pH. By using protein-free blocking buffer and pre-adsorbing human sera with phage host cell ER2738 extracts significantly decreased non-specific signals. Finally, when these conditions were applied to phage ELISA using K10P1, the values of the negative controls were concentrated near cutoff values, which made the assay more reliable. The optimized phage ELISA conditions described here would increase the efficacy of detection specific autoantibodies in human sera.


Assuntos
Autoanticorpos/sangue , Bacteriófagos/genética , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Imobilizadas , Humanos , Biblioteca de Peptídeos , Sensibilidade e Especificidade
13.
Int J Oncol ; 36(6): 1453-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20428769

RESUMO

Autoantibodies, which are generated by immune system recognizing the presence of the abnormal tumor-associated antigens, are promising biomarkers for early detection of tumors. Recently, we established a B cell hybridoma pool derived from H-ras12V transgenic mouse, a typical hepatocellular carcinoma model, as a source of tumor-associated autoantibodies without using any extracellular antigens and have characterized the specific target antigens against them. K1 autoantibody, one of them, was investigated in this study and its target antigen was identified by mass spectrometric analysis as fatty acid synthase (FASN), an important oncogenic protein. Moreover, a specific mimotope against K1 autoantibody was screened from the cyclic random hepta-peptide phage library and, using it as a coating antigen for ELISA, we could distinguish patients with hepatocellular carcinoma (HCC) vs. normal subjects with 96.55% sensitivity and 100% specificity. These results imply that anti-FASN autoantibody is induced in patients with HCC and detection of anti-FASN autoantibody can be used for the diagnosis of HCC.


Assuntos
Autoanticorpos , Carcinoma Hepatocelular/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Ácido Graxo Sintases/imunologia , Neoplasias Hepáticas/diagnóstico , Animais , Anticorpos Monoclonais/imunologia , Autoanticorpos/imunologia , Autoantígenos/imunologia , Biomarcadores Tumorais/imunologia , Western Blotting , Carcinoma Hepatocelular/sangue , Carcinoma Hepatocelular/imunologia , Separação Celular , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunoprecipitação , Neoplasias Hepáticas/sangue , Neoplasias Hepáticas/imunologia , Camundongos , Camundongos Transgênicos , Proteínas Proto-Oncogênicas p21(ras)/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...