Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 2559, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297116

RESUMO

Formalin-fixed, paraffin-embedded (FFPE) tissue specimens are routinely used in pathological diagnosis, but their large number of artifactual mutations complicate the evaluation of companion diagnostics and analysis of next-generation sequencing data. Identification of variants with low allele frequencies is challenging because existing FFPE filtering tools label all low-frequency variants as artifacts. To address this problem, we aimed to develop DEEPOMICS FFPE, an AI model that can classify a true variant from an artifact. Paired whole exome sequencing data from fresh frozen and FFPE samples from 24 tumors were obtained from public sources and used as training and validation sets at a ratio of 7:3. A deep neural network model with three hidden layers was trained with input features using outputs of the MuTect2 caller. Contributing features were identified using the SHapley Additive exPlanations algorithm and optimized based on training results. The performance of the final model (DEEPOMICS FFPE) was compared with those of existing models (MuTect filter, FFPolish, and SOBDetector) by using well-defined test datasets. We found 41 discriminating properties for FFPE artifacts. Optimization of property quantification improved the model performance. DEEPOMICS FFPE removed 99.6% of artifacts while maintaining 87.1% of true variants, with an F1-score of 88.3 in the entire dataset not used for training, which is significantly higher than those of existing tools. Its performance was maintained even for low-allele-fraction variants with a specificity of 0.995, suggesting that it can be used to identify subclonal variants. Different from existing methods, DEEPOMICS FFPE identified most of the sequencing artifacts in the FFPE samples while retaining more of true variants, including those of low allele frequencies. The newly developed tool DEEPOMICS FFPE may be useful in designing capture panels for personalized circulating tumor DNA assay and identifying candidate neoepitopes for personalized vaccine design. DEEPOMICS FFPE is freely available on the web ( http://deepomics.co.kr/ffpe ) for research.


Assuntos
Artefatos , Formaldeído , Inclusão em Parafina , Fixação de Tecidos/métodos , Análise de Sequência de DNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Redes Neurais de Computação
2.
Cell Rep ; 36(10): 109671, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496258

RESUMO

Phosphorylation of the RNA polymerase II C-terminal domain Y1S2P3T4S5P6S7 consensus sequence coordinates key events during transcription, and its deregulation leads to defects in transcription and RNA processing. Here, we report that the histone deacetylase activity of the fission yeast Hos2/Set3 complex plays an important role in suppressing cryptic initiation of antisense transcription when RNA polymerase II phosphorylation is dysregulated due to the loss of Ssu72 phosphatase. Interestingly, although single Hos2 and Set3 mutants have little effect, loss of Hos2 or Set3 combined with ssu72Δ results in a synergistic increase in antisense transcription globally and correlates with elevated sensitivity to genotoxic agents. We demonstrate a key role for the Ssu72/Hos2/Set3 mechanism in the suppression of cryptic antisense transcription at the 3' end of convergent genes that are most susceptible to these defects, ensuring the fidelity of gene expression within dense genomes of simple eukaryotes.


Assuntos
Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Histona Desacetilases/metabolismo , Schizosaccharomyces/metabolismo , Histonas/metabolismo , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética
3.
Methods Enzymol ; 612: 489-504, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30502955

RESUMO

The RNA polymerase II carboxyl-terminal domain (CTD) consists of tandem repeats of consensus sequence Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7. Dynamic posttranslational modifications of the CTD generate a CTD code crucial for the cotranscriptional recruitment of factors that control transcription, chromatin modification, and RNA processing. Analysis of CTD phosphorylation by ChIP (Chromatin ImmunoPrecipitation) coupled with high-throughput DNA sequencing (ChIP-seq) is a powerful tool to investigate the changes in CTD phosphorylation during the transcription cycle. In this chapter, we describe a ChIP-seq protocol to profile the different CTD phospho-marks in fission yeast. Using this protocol, we have found that Tyr1P, Ser2P, and Thr4P signals are highest at gene 3' ends, whereas Ser5P is enriched across the gene bodies.


Assuntos
RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/metabolismo , Imunoprecipitação da Cromatina , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Polimerase II/química , RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Transcrição Gênica/genética
4.
Cell Rep ; 25(1): 259-269.e5, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30282034

RESUMO

Termination of RNA polymerase II (Pol II) transcription is a key step that is important for 3' end formation of functional mRNA, mRNA release, and Pol II recycling. Even so, the underlying termination mechanism is not yet understood. Here, we demonstrate that the conserved and essential termination factor Seb1 is found on Pol II near the end of the RNA exit channel and the Rpb4/7 stalk. Furthermore, the Seb1 interaction surface with Pol II largely overlaps with that of the elongation factor Spt5. Notably, Seb1 co-transcriptional recruitment is dependent on Spt5 dephosphorylation by the conserved PP1 phosphatase Dis2, which also dephosphorylates threonine 4 within the Pol II heptad repeated C-terminal domain. We propose that Dis2 orchestrates the transition from elongation to termination phase during the transcription cycle by mediating elongation to termination factor exchange and dephosphorylation of Pol II C-terminal domain.


Assuntos
Fatores de Alongamento de Peptídeos/genética , RNA Polimerase II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição/genética , Terminação da Transcrição Genética/fisiologia , Transcrição Gênica/genética
5.
Nucleic Acids Res ; 46(11): 5426-5440, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29618061

RESUMO

It is important to accurately regulate the expression of genes involved in development and environmental response. In the fission yeast Schizosaccharomyces pombe, meiotic genes are tightly repressed during vegetative growth. Despite being embedded in heterochromatin these genes are transcribed and believed to be repressed primarily at the level of RNA. However, the mechanism of facultative heterochromatin formation and the interplay with transcription regulation is not understood. We show genome-wide that HDAC-dependent histone deacetylation is a major determinant in transcriptional silencing of facultative heterochromatin domains. Indeed, mutation of class I/II HDACs leads to increased transcription of meiotic genes and accumulation of their mRNAs. Mechanistic dissection of the pho1 gene where, in response to phosphate, transient facultative heterochromatin is established by overlapping lncRNA transcription shows that the Clr3 HDAC contributes to silencing independently of SHREC, but in an lncRNA-dependent manner. We propose that HDACs promote facultative heterochromatin by establishing alternative transcriptional silencing.


Assuntos
Fosfatase Ácida/genética , Proteínas de Ciclo Celular/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , RNA Longo não Codificante/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Montagem e Desmontagem da Cromatina/genética , Heterocromatina/metabolismo , Meiose/genética , Processamento de Proteína Pós-Traducional/genética , Interferência de RNA
6.
Nat Commun ; 8: 14861, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28367989

RESUMO

Termination of RNA polymerase II (Pol II) transcription is an important step in the transcription cycle, which involves the dislodgement of polymerase from DNA, leading to release of a functional transcript. Recent studies have identified the key players required for this process and showed that a common feature of these proteins is a conserved domain that interacts with the phosphorylated C-terminus of Pol II (CTD-interacting domain, CID). However, the mechanism by which transcription termination is achieved is not understood. Using genome-wide methods, here we show that the fission yeast CID-protein Seb1 is essential for termination of protein-coding and non-coding genes through interaction with S2-phosphorylated Pol II and nascent RNA. Furthermore, we present the crystal structures of the Seb1 CTD- and RNA-binding modules. Unexpectedly, the latter reveals an intertwined two-domain arrangement of a canonical RRM and second domain. These results provide important insights into the mechanism underlying eukaryotic transcription termination.


Assuntos
Sequência Conservada , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Terminação da Transcrição Genética , Sequência de Bases , Sobrevivência Celular , Cristalografia por Raios X , Genes Fúngicos , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/química , Fases de Leitura Aberta/genética , Fosforilação , Mutação Puntual/genética , Ligação Proteica , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Relação Estrutura-Atividade , Especificidade por Substrato
7.
J Biol Chem ; 291(25): 13229-42, 2016 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-27076633

RESUMO

The yeast Nrd1 interacts with the C-terminal domain (CTD) of RNA polymerase II (RNApII) through its CTD-interacting domain (CID) and also associates with the nuclear exosome, thereby acting as both a transcription termination and RNA processing factor. Previously, we found that the Nrd1 CID is required to recruit the nuclear exosome to the Nrd1 complex, but it was not clear which exosome subunits were contacted. Here, we show that two nuclear exosome cofactors, Mpp6 and Trf4, directly and competitively interact with the Nrd1 CID and differentially regulate the association of Nrd1 with two catalytic subunits of the exosome. Importantly, Mpp6 promotes the processing of Nrd1-terminated transcripts preferentially by Dis3, whereas Trf4 leads to Rrp6-dependent processing. This suggests that Mpp6 and Trf4 may play a role in choosing a particular RNA processing route for Nrd1-terminated transcripts within the exosome by guiding the transcripts to the appropriate exonuclease.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Exonucleases/metabolismo , RNA Fúngico/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Exossomos/genética , Exossomos/metabolismo , Regulação Fúngica da Expressão Gênica , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Transcrição Gênica
8.
J Biol Chem ; 288(51): 36676-90, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24196955

RESUMO

The RNA polymerase II (RNApII) C-terminal domain (CTD)-interacting domain (CID) proteins are involved in two distinct RNApII termination pathways and recognize different phosphorylated forms of CTD. To investigate the role of differential CTD-CID interactions in the choice of termination pathway, we altered the CTD-binding specificity of Nrd1 by domain swapping. Nrd1 with the CID from Rtt103 (Nrd1(CID(Rtt103))) causes read-through transcription at many genes, but can also trigger termination where multiple Nrd1/Nab3-binding sites and the Ser(P)-2 CTD co-exist. Therefore, CTD-CID interactions target specific termination complexes to help choose an RNApII termination pathway. Interactions of Nrd1 with both CTD and nascent transcripts contribute to efficient termination by the Nrd1 complex. Surprisingly, replacing the Nrd1 CID with that from Rtt103 reduces binding to Rrp6/Trf4, and RNA transcripts terminated by Nrd1(CID(Rtt103)) are predominantly processed by core exosome. Thus, the Nrd1 CID couples Ser(P)-5 CTD not only to termination, but also to RNA processing by the nuclear exosome.


Assuntos
Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , RNA Polimerase II/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Terminação da Transcrição Genética , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Sequência de Bases , Sítios de Ligação , Núcleo Celular/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , RNA Polimerase II/química , RNA Polimerase II/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Biotechnol Lett ; 34(2): 303-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22009569

RESUMO

The ATX1 deletion strain of Saccharomyces cerevisiae is more resistant to Cd(2+) than the wild-type. To investigate the function of Atx1 in Cd(2+) toxicity, we used a metal-binding assay to study the interaction between Atx1 and Cd(2+) in vitro. Using circular dichroism and two-hybrid analyses, we found that Atx1 can bind Cd(2+) specifically and that Cd(2+) binding to Atx1 affects the physical interaction between Atx1 and Ccc2. These results imply that Atx1 delivers Cd(2+) to Ccc2 and that this delivery is, at least in part, responsible for Cd(2+) toxicity in S. cerevisiae.


Assuntos
Cádmio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cátions Bivalentes/metabolismo , Mapeamento de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Dicroísmo Circular , Proteínas de Transporte de Cobre , Ligação Proteica , Técnicas do Sistema de Duplo-Híbrido
10.
Biochem J ; 431(2): 257-65, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20670216

RESUMO

Cadmium is a toxic metal and the mechanism of its toxicity has been studied in various model systems from bacteria to mammals. We employed Saccharomyces cerevisiae as a model system to study cadmium toxicity at the molecular level because it has been used to identify the molecular mechanisms of toxicity found in higher organisms. cDNA microarray and Northern blot analyses revealed that cadmium salts inhibited the expression of genes related to copper metabolism. Western blotting, Northern blotting and chromatin immunoprecipitation experiments indicated that CTR1 expression was inhibited at the transcriptional level through direct inhibition of the Mac1 transcriptional activator. The decreased expression of CTR1 results in cellular copper deficiency and inhibition of Fet3 activity, which eventually impairs iron uptake. In this way, cadmium exhibits a negative effect on both iron and copper homoeostasis.


Assuntos
Cádmio/toxicidade , Cobre/metabolismo , Homeostase/efeitos dos fármacos , Proteínas Nucleares/antagonistas & inibidores , Regulon/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Saccharomyces cerevisiae/genética , Transativadores/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Cobre/farmacologia , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos/genética , Ferro/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Regulon/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
11.
Curr Genet ; 55(6): 593-600, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19756628

RESUMO

The function of endocytic pathway in filamentous fungi has remained elusive. Recently, we have identified that FgEnd1, which has a 27% amino acid homology and shares specific EH3 domain with ScEnd3 of Saccharomyces cerevisiae, is a putative member of the endocytic machinery in Fusarium graminearum. The failure of the scend3 mutant to uptake Lucifer yellow (LY) was recovered by introducing FgEnd1 into S. cerevisiae. The deletion of fgend1 in F. graminearum resulted in a 2-fold decrease in the rate of uptake of the endocytic marker FM4-64 when compared to wild-type cells. The rate of uptake was similar to that seen in latrunculin A (Lat-A)-treated cells. Furthermore, fgend1 deletion strain of F. graminearum showed lower ferrichrome (FC) uptake activity than wild-type F. graminearum, and the same rate as LatA-treated cells. Taken together, these results suggest that FgEnd1 is a putative member of the endocytic machinery, although it acts through a different mechanism from ScEnd3 or ScEnd4 of S. cerevisiae.


Assuntos
Endocitose/fisiologia , Ferricromo/metabolismo , Proteínas Fúngicas/fisiologia , Fusarium/fisiologia , Sequência de Aminoácidos , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Corantes/metabolismo , Proteínas do Citoesqueleto/química , Endocitose/efeitos dos fármacos , Endocitose/genética , Proteínas Fúngicas/genética , Fusarium/efeitos dos fármacos , Fusarium/genética , Isoquinolinas/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Proteínas de Saccharomyces cerevisiae/química , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiazolidinas/farmacologia
12.
Biochem J ; 422(1): 181-91, 2009 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-19469713

RESUMO

Aft1 is a transcriptional activator in Saccharomyces cerevisiae that responds to iron availability and regulates the expression of genes in the iron regulon, such as FET3, FTR1 and the ARN family. Using a two-hybrid screen, we found that Aft1 physically interacts with the FOB (ferrioxamine B) transporter Arn3. This interaction modulates the ability of Arn3 to take up FOB. The interaction between Arn3 and Aft1 was confirmed by beta-galactosidase, co-immunoprecipitation and SPR (surface plasmon resonance) assays. Truncated Aft1 had a stronger interaction with Arn3 and caused a higher FOB-uptake activity than full-length Aft1. Interestingly, only full-length Aft1 induced the correct localization of Arn3 in response to FOB. Furthermore, we found Aft1 affected Arn3 ubiquitination. These results suggest that Aft1 interacts with Arn3 and may regulate the ubiquitination of Arn3 in the cytosolic compartment.


Assuntos
Desferroxamina/metabolismo , Compostos Férricos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Membrana Celular/metabolismo , Ceruloplasmina/metabolismo , Retículo Endoplasmático/metabolismo , Lisina/metabolismo , Mutação/genética , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Reprodutibilidade dos Testes , Ressonância de Plasmônio de Superfície , Técnicas do Sistema de Duplo-Híbrido
13.
Biochem Biophys Res Commun ; 371(1): 63-8, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18406344

RESUMO

Intracellular levels of iron are tightly regulated. Saccharomyces cerevisiae uses well-defined pathways to extract iron molecules from the environment. Once inside the cell, the iron molecules must be transferred to target sites via an intracellular iron transporter. Although analogous carriers have been described for other metals, such as copper, an iron transporter has yet to be identified. We used two-dimensional gel electrophoresis and mass spectrometry techniques to attempt to identify the iron transporter from cytosolic fraction of S. cerevisiae. In this study, we identified the iron-binding activity of thioredoxin reductase, and our data suggest a potential role for this enzyme in intracellular iron transport.


Assuntos
Proteínas de Ligação ao Ferro/fisiologia , Ferro/metabolismo , Saccharomyces cerevisiae/enzimologia , Tiorredoxina Redutase 1/fisiologia , Cromatografia de Afinidade/métodos , Dicroísmo Circular , Meios de Cultura , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/isolamento & purificação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Espectrofotometria Ultravioleta , Tiorredoxina Redutase 1/genética , Tiorredoxina Redutase 1/isolamento & purificação
14.
Biochem Biophys Res Commun ; 358(3): 743-50, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17512907

RESUMO

Psychrophiles have been known as efficient organism to degrade organic solvent. To investigate the mechanism of solvent stress and identify the factors that affect the solvent stress in psychrophiles, we selected Bacillus psychrosaccharolyticus one of the psychrophiles and two-dimensional gel electrophoresis was performed. Among the protein spots analyzed by 2-DE, five spots induced in 3% IPA stress conditions were identified by MS/MS, and one of these spots was identified as a Hsp33 family. The Hsp33 protein sequence of B. psychrosaccharolyticus exhibited a high similarity with the corresponding proteins of other bacteria. The Hsp33 protein of B. psychrosaccharolyticus has a highly conserved zinc-binding domain (CXCX, CXXC) that includes four cysteine residues in the C-terminus. In addition, the transcriptional induction of the HSP33 of B. psychrosaccharolyticus was confirmed by Northern blot analysis, and formation of free thiol linkage was induced under stress conditions such as exposure to solvents, heat-shock, and oxidative stress. Furthermore, over-expressed strains of HSP33 of B. psychrosaccharolyticus in Escherichia coli improved stress tolerance to the organic solvent when compared with the wild-type. These data suggest that the solvent stress condition was similar to heat-shock or oxidative stress, especially through the triggering of induction and activation of a redox-regulatory chaperone, Hsp33, and Hsp33 plays a critical role in the tolerance to stress.


Assuntos
Proteínas de Bactérias/química , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Sequência de Aminoácidos , Bacillus/enzimologia , Proteínas de Bactérias/fisiologia , Eletroforese em Gel Bidimensional , Escherichia coli/metabolismo , Proteínas de Choque Térmico/fisiologia , Espectrometria de Massas , Chaperonas Moleculares/fisiologia , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , RNA/química , Homologia de Sequência de Aminoácidos , Solventes/química , Compostos de Sulfidrila/química , Transcrição Gênica , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...