Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Structure ; 32(1): 97-111.e6, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38000367

RESUMO

Atomistic resolution is the standard for high-resolution biomolecular structures, but experimental structural data are often at lower resolution. Coarse-grained models are also used extensively in computational studies to reach biologically relevant spatial and temporal scales. This study explores the use of advanced machine learning networks for reconstructing atomistic models from reduced representations. The main finding is that a single bead per amino acid residue allows construction of accurate and stereochemically realistic all-atom structures with minimal loss of information. This suggests that lower resolution representations of proteins may be sufficient for many applications when combined with a machine learning framework that encodes knowledge from known structures. Practical applications include the rapid addition of atomistic detail to low-resolution structures from experiment or computational coarse-grained models. The application of rapid, deterministic all-atom reconstruction within multi-scale frameworks is further demonstrated with a rapid protocol for the generation of accurate models from cryo-EM densities close to experimental structures.


Assuntos
Aminoácidos , Proteínas , Proteínas/química
2.
Nat Commun ; 14(1): 774, 2023 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-36774359

RESUMO

Dynamics and conformational sampling are essential for linking protein structure to biological function. While challenging to probe experimentally, computer simulations are widely used to describe protein dynamics, but at significant computational costs that continue to limit the systems that can be studied. Here, we demonstrate that machine learning can be trained with simulation data to directly generate physically realistic conformational ensembles of proteins without the need for any sampling and at negligible computational cost. As a proof-of-principle we train a generative adversarial network based on a transformer architecture with self-attention on coarse-grained simulations of intrinsically disordered peptides. The resulting model, idpGAN, can predict sequence-dependent coarse-grained ensembles for sequences that are not present in the training set demonstrating that transferability can be achieved beyond the limited training data. We also retrain idpGAN on atomistic simulation data to show that the approach can be extended in principle to higher-resolution conformational ensemble generation.


Assuntos
Proteínas Intrinsicamente Desordenadas , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas , Peptídeos/química , Aprendizado de Máquina , Proteínas Intrinsicamente Desordenadas/metabolismo
3.
J Chem Theory Comput ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607820

RESUMO

Biomolecular condensation, especially liquid-liquid phase separation, is an important physical process with relevance for a number of different aspects of biological functions. Key questions of what drives such condensation, especially in terms of molecular composition, can be addressed via computer simulations, but the development of computationally efficient yet physically realistic models has been challenging. Here, the coarse-grained model COCOMO is introduced that balances the polymer behavior of peptides and RNA chains with their propensity to phase separate as a function of composition and concentration. COCOMO is a residue-based model that combines bonded terms with short- and long-range terms, including a Debye-Hückel solvation term. The model is highly predictive of experimental data on phase-separating model systems. It is also computationally efficient and can reach the spatial and temporal scales on which biomolecular condensation is observed with moderate computational resources.

4.
J Phys Chem Lett ; 13(43): 10175-10182, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36279257

RESUMO

Transient protein-protein interactions occur frequently under the crowded conditions encountered in biological environments. Tryptophan-cysteine quenching is introduced as an experimental approach with minimal labeling for characterizing such interactions between proteins due to its sensitivity to nano- to microsecond dynamics on subnanometer length scales. The experiments are paired with computational modeling at different resolutions including fully atomistic molecular dynamics simulations for interpretation of the experimental observables and to gain molecular-level insights. This approach is applied to model systems, villin variants and the drkN SH3 domain, in the presence of protein G crowders. It is demonstrated that Trp-Cys quenching experiments can differentiate between overall attractive and repulsive interactions between different proteins, and they can discern variations in interaction preferences at different protein surface locations. The close integration between experiment and simulations also provides an opportunity to evaluate different molecular force fields for the simulation of concentrated protein solutions.


Assuntos
Cisteína , Simulação de Dinâmica Molecular , Triptofano
5.
Proteins ; 90(11): 1873-1885, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35510704

RESUMO

The family of G-protein coupled receptors (GPCRs) is one of the largest protein families in the human genome. GPCRs transduct chemical signals from extracellular to intracellular regions via a conformational switch between active and inactive states upon ligand binding. While experimental structures of GPCRs remain limited, high-accuracy computational predictions are now possible with AlphaFold2. However, AlphaFold2 only predicts one state and is biased toward either the active or inactive conformation depending on the GPCR class. Here, a multi-state prediction protocol is introduced that extends AlphaFold2 to predict either active or inactive states at very high accuracy using state-annotated templated GPCR databases. The predicted models accurately capture the main structural changes upon activation of the GPCR at the atomic level. For most of the benchmarked GPCRs (10 out of 15), models in the active and inactive states were closer to their corresponding activation state structures. Median RMSDs of the transmembrane regions were 1.12 Å and 1.41 Å for the active and inactive state models, respectively. The models were more suitable for protein-ligand docking than the original AlphaFold2 models and template-based models. Finally, our prediction protocol predicted accurate GPCR structures and GPCR-peptide complex structures in GPCR Dock 2021, a blind GPCR-ligand complex modeling competition. We expect that high accuracy GPCR models in both activation states will promote understanding in GPCR activation mechanisms and drug discovery for GPCRs. At the time, the new protocol paves the way towards capturing the dynamics of proteins at high-accuracy via machine-learning methods.


Assuntos
Peptídeos , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica , Receptores Acoplados a Proteínas G/química
6.
Nat Methods ; 19(6): 679-682, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35637307

RESUMO

ColabFold offers accelerated prediction of protein structures and complexes by combining the fast homology search of MMseqs2 with AlphaFold2 or RoseTTAFold. ColabFold's 40-60-fold faster search and optimized model utilization enables prediction of close to 1,000 structures per day on a server with one graphics processing unit. Coupled with Google Colaboratory, ColabFold becomes a free and accessible platform for protein folding. ColabFold is open-source software available at https://github.com/sokrypton/ColabFold and its novel environmental databases are available at https://colabfold.mmseqs.com .


Assuntos
Dobramento de Proteína , Software , Computadores , Bases de Dados Factuais , Proteínas
7.
Elife ; 112022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471152

RESUMO

Intramembrane proteases (IPs) function in numerous signaling pathways that impact health, but elucidating the regulation of membrane-embedded proteases is challenging. We examined inhibition of intramembrane metalloprotease SpoIVFB by proteins BofA and SpoIVFA. We found that SpoIVFB inhibition requires BofA residues in and near a predicted transmembrane segment (TMS). This segment of BofA occupies the SpoIVFB active site cleft based on cross-linking experiments. SpoIVFB inhibition also requires SpoIVFA. The inhibitory proteins block access of the substrate N-terminal region to the membrane-embedded SpoIVFB active site, based on additional cross-linking experiments; however, the inhibitory proteins did not prevent interaction between the substrate C-terminal region and the SpoIVFB soluble domain. We built a structural model of SpoIVFB in complex with BofA and parts of SpoIVFA and substrate, using partial homology and constraints from cross-linking and co-evolutionary analyses. The model predicts that conserved BofA residues interact to stabilize a TMS and a membrane-embedded C-terminal region. The model also predicts that SpoIVFA bridges the BofA C-terminal region and SpoIVFB, forming a membrane-embedded inhibition complex. Our results reveal a novel mechanism of IP inhibition with clear implications for relief from inhibition in vivo and design of inhibitors as potential therapeutics.


Proteases are a type of protein that work by cutting up other proteins. The part of the protease that does the cutting is called the active site. Intramembrane proteases are a specific group of proteases that cut up the proteins within cell membranes. There is a lot of interest in learning how to control intramembrane proteases because they are important in regulating the signaling processes that cells use to communicate. SpoIVFB is an intramembrane protease from the bacterium Bacillus subtilis that is studied often as a model for these types of proteases. Bacillus subtilis uses SpoIVFB to produce spores, dormant reproductive cells that can survive extreme, harsh conditions for long periods with minimal energy. SpoIVFB is part of the system that allows spores to communicate with their 'parent cells', the cells they develop in. The activity of this protein is blocked by two other proteins called SpoIVFA and BofA. When these proteins are destroyed, SpoIVFB becomes active, but it is unclear exactly how SpoIVFA and BofA inhibit SpoIVFB. Understanding this relationship could help to reveal ways to regulate other intramembrane proteases. To address this question, Olenic et al. used genetic, biochemical and computer modelling techniques to study how SpoIVFB activity is regulated in Bacillus subtilis. The results show that a region of BofA blocks the area of SpoIVFB that cuts a protein called Pro-σK, which stops SpoIVFB from releasing active σK into the 'parent cell'. By making genetic variants of BofA, Olenic et al. identified three parts of BofA that are needed to fully inhibit SpoIVFB. A computer model predicts that these three parts give BofA the right shape to inhibit SpoIVFB, and that SpoIVFA helps by forming a bridge between BofA and SpoIVFB. This investigation reveals how the intramembrane protease SpoIVFB is regulated by SpoIVFA and BofA. This information could be useful in developing inhibitors for other intramembrane proteases. The next stage will be to make and test artificial inhibitors based on the structures studied here. If successful, these could have applications in areas such as medicine, agriculture, industry and environmental protection.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismo
8.
Curr Opin Struct Biol ; 73: 102340, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219215

RESUMO

Proteins encounter frequent molecular interactions in biological environments. Computer simulations have become an increasingly important tool in providing mechanistic insights into how such interactions in vivo relate to their biological function. The review here focuses on simulations describing protein assembly and molecular crowding effects as two important aspects that are distinguished mainly by how specific and long-lived protein contacts are. On the topic of crowding, recent simulations have provided new insights into how crowding affects protein folding and stability, modulates enzyme activity, and affects diffusive properties. Recent studies of assembly processes focus on assembly pathways, especially for virus capsids, amyloid aggregation pathways, and the role of multivalent interactions leading to phase separation. Also, discussed are technical challenges in achieving increasingly realistic simulations of interactions in cellular environments.


Assuntos
Amiloide , Dobramento de Proteína , Fenômenos Biofísicos , Simulação por Computador
9.
Crit Rev Biochem Mol Biol ; 56(6): 640-668, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34428995

RESUMO

Aerobic respiration is a key energy-producing pathway in many prokaryotes and virtually all eukaryotes. The final step of aerobic respiration is most commonly catalyzed by heme-copper oxidases embedded in the cytoplasmic or mitochondrial membrane. The majority of these terminal oxidases contain a prenylated heme (typically heme a or occasionally heme o) in the active site. In addition, many heme-copper oxidases, including mitochondrial cytochrome c oxidases, possess a second heme a cofactor. Despite the critical role of heme a in the electron transport chain, the details of the mechanism by which heme b, the prototypical cellular heme, is converted to heme o and then to heme a remain poorly understood. Recent structural investigations, however, have helped clarify some elements of heme a biosynthesis. In this review, we discuss the insight gained from these advances. In particular, we present a new structural model of heme o synthase (HOS) based on distance restraints from inferred coevolutionary relationships and refined by molecular dynamics simulations that are in good agreement with the experimentally determined structures of HOS homologs. We also analyze the two structures of heme a synthase (HAS) that have recently been solved by other groups. For both HOS and HAS, we discuss the proposed catalytic mechanisms and highlight how new insights into the heme-binding site locations shed light on previously obtained biochemical data. Finally, we explore the implications of the new structural data in the broader context of heme trafficking in the heme a biosynthetic pathway and heme-copper oxidase assembly.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Bactérias/metabolismo , Heme/análogos & derivados , Animais , Archaea/metabolismo , Bactérias/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Eucariotos/metabolismo , Heme/biossíntese , Heme/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Transporte Proteico
10.
Proteins ; 89(12): 1870-1887, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34156124

RESUMO

Protein structure refinement is the last step in protein structure prediction pipelines. Physics-based refinement via molecular dynamics (MD) simulations has made significant progress during recent years. During CASP14, we tested a new refinement protocol based on an improved sampling strategy via MD simulations. MD simulations were carried out at an elevated temperature (360 K). An optimized use of biasing restraints and the use of multiple starting models led to enhanced sampling. The new protocol generally improved the model quality. In comparison with our previous protocols, the CASP14 protocol showed clear improvements. Our approach was successful with most initial models, many based on deep learning methods. However, we found that our approach was not able to refine machine-learning models from the AlphaFold2 group, often decreasing already high initial qualities. To better understand the role of refinement given new types of models based on machine-learning, a detailed analysis via MD simulations and Markov state modeling is presented here. We continue to find that MD-based refinement has the potential to improve AI predictions. We also identified several practical issues that make it difficult to realize that potential. Increasingly important is the consideration of inter-domain and oligomeric contacts in simulations; the presence of large kinetic barriers in refinement pathways also continues to present challenges. Finally, we provide a perspective on how physics-based refinement could continue to play a role in the future for improving initial predictions based on machine learning-based methods.


Assuntos
Inteligência Artificial , Biologia Computacional/métodos , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas , Software , Cadeias de Markov , Fenômenos Físicos , Proteínas/química , Proteínas/metabolismo
11.
J Chem Inf Model ; 61(5): 2283-2293, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33938216

RESUMO

Proteins fold and function in water, and protein-water interactions play important roles in protein structure and function. In computational studies on protein structure and interaction, the effect of water is considered either implicitly or explicitly. Implicit water models are frequently used in protein structure prediction and docking because they are computationally much more efficient than explicit water models, which are often employed in molecular dynamics (MD) simulations. However, implicit water models that treat water as a continuous solvent medium cannot account for specific atomistic protein-water interactions that are critical for structure formation and interactions with other molecules. Various methods for predicting water molecules that form specific atomistic interactions with proteins have been developed. Methods involving MD simulations or the integral equation theory tend to produce more accurate results at a higher computational cost than simple geometry- or energy-based methods. Here, we present a novel method for predicting water positions on a protein surface called GalaxyWater-wKGB, which is based on a statistical potential, a water knowledge-based potential based on the generalized Born model (wKGB). This method is accurate and rapid because it does not require conformational sampling or iterative computation owing to the effective statistical treatment employed to derive the potential. The statistical potential describes specific protein atom-water interactions more accurately than conventional potentials by considering the dependence on the degree of solvent accessibility of protein atoms as well as on protein atom-water distances and orientations. The introduction of solvent accessibility allows effective consideration of competing nonspecific protein-water and intraprotein interactions. When tested on high-resolution protein crystal structures, this method could recover similar or larger fractions of crystallographic water 180 times faster than the sophisticated integral equation theory, 3D-RISM. A web service of this water prediction method is freely available at http://galaxy.seoklab.org/wkgb.


Assuntos
Proteínas , Água , Conformação Molecular , Simulação de Dinâmica Molecular , Solventes
12.
J Chem Theory Comput ; 17(3): 1931-1943, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33562962

RESUMO

Protein structures provide valuable information for understanding biological processes. Protein structures can be determined by experimental methods such as X-ray crystallography, nuclear magnetic resonance spectroscopy, or cryogenic electron microscopy. As an alternative, in silico methods can be used to predict protein structures. These methods utilize protein structure databases for structure prediction via template-based modeling or for training machine-learning models to generate predictions. Structure prediction for proteins distant from proteins with known structures often results in lower accuracy with respect to the true physiological structures. Physics-based protein model refinement methods can be applied to improve model accuracy in the predicted models. Refinement methods rely on conformational sampling around the predicted structures, and if structures closer to the native states are sampled, improvements in the model quality become possible. Molecular dynamics simulations have been especially successful for improving model qualities but although consistent refinement can be achieved, the improvements in model qualities are still moderate. To extend the refinement performance of a simulation-based protocol, we explored new schemes that focus on optimized use of biasing functions and the application of increased simulation temperatures. In addition, we tested the use of alternative initial models so that the simulations can explore the conformational space more broadly. Based on the insights of this analysis, we are proposing a new refinement protocol that significantly outperformed previous state-of-the-art molecular dynamics simulation-based protocols in the benchmark tests described here.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Cristalografia por Raios X , Bases de Dados de Proteínas , Aprendizado de Máquina , Conformação Proteica
13.
Methods Mol Biol ; 2165: 127-137, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32621222

RESUMO

Cellular processes, such as metabolism, signal transduction, or immunity, often depend on the homo-oligomerization of proteins. Detailed structural knowledge of the homo-oligomer structure is therefore crucial for molecular-level understanding of protein functions and their regulation. In this chapter, we introduce the GalaxyHomomer server, which supports easy-to-use web interfaces for general users. It is freely accessible at http://galaxy.seoklab.org/homomer . GalaxyHomomer carries out template-based modeling, ab initio docking or both depending on the availability of proper oligomer templates. It also incorporates recently developed model refinement methods that can consistently improve model quality by performing symmetric loop modeling and overall structure refinement. Moreover, the server provides additional options that can be chosen by the user depending on the availability of information on the monomer structure, oligomeric state, and locations of unreliable/flexible loops or termini.


Assuntos
Simulação de Acoplamento Molecular/métodos , Multimerização Proteica , Software , Domínios Proteicos
14.
bioRxiv ; 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32511334

RESUMO

Protein structures are crucial for understanding their biological activities. Since the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), there is an urgent need to understand the biological behavior of the virus and provide a basis for developing effective therapies. Since the proteome of the virus was determined, some of the protein structures could be determined experimentally, and others were predicted via template-based modeling approaches. However, tertiary structures for several proteins are still not available from experiment nor they could be accurately predicted by template-based modeling because of lack of close homolog structures. Previous efforts to predict structures for these proteins include efforts by DeepMind and the Zhang group via machine learning-based structure prediction methods, i.e. AlphaFold and C-I-TASSER. However, the predicted models vary greatly and have not yet been subjected to refinement. Here, we are reporting new predictions from our in-house structure prediction pipeline. The pipeline takes advantage of inter-residue contact predictions from trRosetta, a machine learning-based method. The predicted models were further improved by applying molecular dynamics simulation-based refinement. We also took the AlphaFold models and refined them by applying the same refinement method. Models based on our structure prediction pipeline and the refined AlphaFold models were analyzed and compared with the C-I-TASSER models. All of our models are available at https://github.com/feiglab/sars-cov-2-proteins.

15.
Proteins ; 88(5): 637-642, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693199

RESUMO

Protein structure prediction has long been available as an alternative to experimental structure determination, especially via homology modeling based on templates from related sequences. Recently, models based on distance restraints from coevolutionary analysis via machine learning to have significantly expanded the ability to predict structures for sequences without templates. One such method, AlphaFold, also performs well on sequences where templates are available but without using such information directly. Here we show that combining machine-learning based models from AlphaFold with state-of-the-art physics-based refinement via molecular dynamics simulations further improves predictions to outperform any other prediction method tested during the latest round of CASP. The resulting models have highly accurate global and local structures, including high accuracy at functionally important interface residues, and they are highly suitable as initial models for crystal structure determination via molecular replacement.


Assuntos
Biologia Computacional/métodos , Aprendizado de Máquina , Proteínas/química , Animais , Humanos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Dobramento de Proteína
16.
Proteins ; 87(12): 1263-1275, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31197841

RESUMO

Protein model refinement has been an essential part of successful protein structure prediction. Molecular dynamics simulation-based refinement methods have shown consistent improvement of protein models. There had been progress in the extent of refinement for a few years since the idea of ensemble averaging of sampled conformations emerged. There was little progress in CASP12 because conformational sampling was not sufficiently diverse due to harmonic restraints. During CASP13, a new refinement method was tested that achieved significant improvements over CASP12. The new method intended to address previous bottlenecks in the refinement problem by introducing new features. Flat-bottom harmonic restraints replaced harmonic restraints, sampling was performed iteratively, and a new scoring function and selection criteria were used. The new protocol expanded conformational sampling at reduced computational costs. In addition to overall improvements, some models were refined significantly to near-experimental accuracy.


Assuntos
Biologia Computacional , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/ultraestrutura , Cristalografia por Raios X , Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Proteínas/genética
17.
Nucleic Acids Res ; 47(W1): W451-W455, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31001635

RESUMO

The 3D structure of a protein can be predicted from its amino acid sequence with high accuracy for a large fraction of cases because of the availability of large quantities of experimental data and the advance of computational algorithms. Recently, deep learning methods exploiting the coevolution information obtained by comparing related protein sequences have been successfully used to generate highly accurate model structures even in the absence of template structure information. However, structures predicted based on either template structures or related sequences require further improvement in regions for which information is missing. Refining a predicted protein structure with insufficient information on certain regions is critical because these regions may be connected to functional specificity that is not conserved among related proteins. The GalaxyRefine2 web server, freely available via http://galaxy.seoklab.org/refine2, is an upgraded version of the GalaxyRefine protein structure refinement server and reflects recent developments successfully tested through CASP blind prediction experiments. This method adopts an iterative optimization approach involving various structure move sets to refine both local and global structures. The estimation of local error and hybridization of available homolog structures are also employed for effective conformation search.


Assuntos
Conformação Proteica , Software , Modelos Moleculares , Análise de Sequência de Proteína
18.
Proc Natl Acad Sci U S A ; 115(52): 13276-13281, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30530696

RESUMO

Refinement is the last step in protein structure prediction pipelines to convert approximate homology models to experimental accuracy. Protocols based on molecular dynamics (MD) simulations have shown promise, but current methods are limited to moderate levels of consistent refinement. To explore the energy landscape between homology models and native structures and analyze the challenges of MD-based refinement, eight test cases were studied via extensive simulations followed by Markov state modeling. In all cases, native states were found very close to the experimental structures and at the lowest free energies, but refinement was hindered by a rough energy landscape. Transitions from the homology model to the native states require the crossing of significant kinetic barriers on at least microsecond time scales. A significant energetic driving force toward the native state was lacking until its immediate vicinity, and there was significant sampling of off-pathway states competing for productive refinement. The role of recent force field improvements is discussed and transition paths are analyzed in detail to inform which key transitions have to be overcome to achieve successful refinement.


Assuntos
Biologia Computacional/métodos , Simulação de Dinâmica Molecular , Conformação Proteica , Dobramento de Proteína , Proteínas/química , Animais , Humanos , Cadeias de Markov , Modelos Moleculares
19.
Sci Rep ; 8(1): 9939, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967418

RESUMO

Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP. Members of the WeFold coopetition (cooperation and competition) participated in CASP as individual teams, but also shared components of their methods to create hybrid pipelines and actively contributed to this effort. We assert that the scale and diversity of integrative prediction pipelines could not have been achieved by any individual lab or even by any collaboration among a few partners. The models contributed by the participating groups and generated by the pipelines are publicly available at the WeFold website providing a wealth of data that remains to be tapped. Here, we analyze the results of the 2014 and 2016 pipelines showing improvements according to the CASP assessment as well as areas that require further adjustments and research.


Assuntos
Caspase 12/metabolismo , Caspases/metabolismo , Biologia Computacional/métodos , Modelos Moleculares , Software , Caspase 12/química , Caspases/química , Humanos , Conformação Proteica
20.
Proteins ; 86(7): 738-750, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675899

RESUMO

A refinement protocol based on physics-based techniques established for water soluble proteins is tested for membrane protein structures. Initial structures were generated by homology modeling and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent systems. Snapshots from the simulations were selected based on scoring with either knowledge-based or implicit membrane-based scoring functions and averaged to obtain refined models. The protocol resulted in consistent and significant refinement of the membrane protein structures similar to the performance of refinement methods for soluble proteins. Refinement success was similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of lipid bilayers may benefit the improvement of lipid-facing residues. Scoring with knowledge-based functions (DFIRE and RWplus) was found to be as good as scoring using implicit membrane-based scoring functions suggesting that differences in internal packing is more important than orientations relative to the membrane during the refinement of membrane protein homology models.


Assuntos
Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Bases de Dados de Proteínas , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...