Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(1): 013201, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725572

RESUMO

We developed a shutter driven by a solenoid to switch on/off the atomic beam of optical lattice clocks developed at KRISS [C. Y. Park et al., Metrologia 50, 119 (2013), S. Lee et al., New J. Phys. 18, 033030 (2016), H. Kim et al., Jpn. J. Appl. Phys. 56, 050302 (2017), and H. Kim et al., Metrologia 58, 055007 (2021)]. The shutter design was focused on long lifetime and compatibility with an ultra-high vacuum (UHV) environment. Thus, the solenoid was designed to be easily installed and removed from the air-side of a CF flange of the shutter. The flag in the vacuum-side moves only with the simple spring action of a sheet of a metal plate without any frictional movement of mechanical parts. All parts in the vacuum-side were made of metals (stainless steel and pure iron) to be baked over the temperature of 200 °C for UHV. The flag head of the shutter displaces up to 10 mm (5 mm) with a response time of 50 (30 ms) and 80 ms (10 ms) for the opening-action and the closing-action, respectively. The lifetime was tested up to 6 × 106 cycles with no performance degradation. We expect the actual lifetime to be much longer than this by virtue of its friction-free design.

2.
Sensors (Basel) ; 21(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671625

RESUMO

We report a chip-scale atomic magnetometer based on coherent population trapping, which can operate near zero magnetic field. By exploiting the asymmetric population among magnetic sublevels in the hyperfine ground state of cesium, we observe that the resonance signal acquires sensitivity to magnetic field in spite of degeneracy. A dispersive signal for magnetic field discrimination is obtained near-zero-field as well as for finite fields (tens of micro-tesla) in a chip-scale device of 0.94 cm3 volume. This shows that it can be readily used in low magnetic field environments, which have been inaccessible so far in miniaturized atomic magnetometers based on coherent population trapping. The measured noise floor of 300 pT/Hz1/2 at the zero-field condition is comparable to that of the conventional finite-field measurement obtained under the same conditions. This work suggests a way to implement integrated atomic magnetometers with a wide operating range.

3.
Appl Opt ; 59(28): 8918-8924, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33104578

RESUMO

An experimental method is developed for robust frequency stabilization using a high-finesse cavity when the laser exhibits large intermittent frequency jumps. This is accomplished by applying an additional slow feedback signal from Doppler-free fluorescence spectroscopy in an atomic beam with increased frequency locking range. As a result, a stable and narrow-linewidth 556 nm laser maintains the frequency lock status for more than a week and contributes to more accurate evaluation of the Yb optical lattice clock. In addition, the reference optical cavity is supported at vibration-insensitive points without any vibration isolation table, making the laser setup more simple and compact.

4.
Sci Adv ; 6(13): eaax4457, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32258391

RESUMO

Frequency-stabilized optical frequency combs have created many high-precision applications. Accurate timing, ultralow phase noise, and narrow linewidth are prerequisites for achieving the ultimate performance of comb-based systems. Ultrastable cavity-based comb-noise stabilization methods have enabled sub-10-15-level frequency instability. However, these methods are complex and alignment sensitive, and their use has been mostly confined to advanced metrology laboratories. Here, we have established a simple, compact, alignment-free, and potentially low-cost all-fiber photonics-based stabilization method for generating multiple ultrastable combs. The achieved performance includes 1-femtosecond timing jitter, few times 10-15-level frequency instability, and <5-hertz linewidth, rivalling those of cavity-stabilized combs. This method features flexibility in configuration: As a representative example, two combs were stabilized with 180-hertz repetition rate difference and ~1-hertz relative linewidth and could be used as an ultrastable, octave-spanning dual-comb spectroscopy source. The demonstrated method constitutes a mechanically robust and reconfigurable tool for generating multiple ultrastable combs suitable for field applications.

5.
Artigo em Inglês | MEDLINE | ID: mdl-29856714

RESUMO

Advanced satellite-based frequency transfers by two-way carrier-phase (TWCP) and integer precise point positioning have been performed between the National Institute of Information and Communications Technology and Korea Research Institute of Standards and Science. We confirm that the disagreement between them is less than at an averaging time of several days. In addition, an overseas frequency ratio measurement of Sr and Yb optical lattice clocks was directly performed by TWCP. We achieved an uncertainty at the mid-10-16 level after a total measurement time of 12 h. The frequency ratio was consistent with the recently reported values within the uncertainty.

6.
Rev Sci Instrum ; 88(2): 025101, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249511

RESUMO

A flag-type atom shutter based on a rotating lever that is driven by a bender piezoelectric actuator was developed to manipulate atomic beams. The shutter flag was displaced by ∼10 mm to open and close a 5-mm-diameter aperture with a shutter time of 13 ms that produced small mechanical vibrations. The short-term shutter time stability for each cycle was 0.03 ms and the long-term stability over an average of 20 000 cycles was 0.02 ms. The operational cycle number (lifetime) of the shutter reached 2.0 × 106 cycles after an intermittent operation over a period of eight months in an ultra-high vacuum chamber, and another shutter in an atmospheric environment swung for 2.6 × 107 cycles of continuous operation at 5 Hz for a period of 60 days without major problems. The shutter was shown to be compatible with the operation in an ultra-high vacuum at a low 10-7 Pa level after a gentle baking treatment.

7.
Sci Rep ; 7: 40917, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102352

RESUMO

Timing jitter is one of the most important properties of femtosecond mode-locked lasers and optical frequency combs. Accurate measurement of timing jitter power spectral density (PSD) is a critical prerequisite for optimizing overall noise performance and further advancing comb applications both in the time and frequency domains. Commonly used jitter measurement methods require a reference mode-locked laser with timing jitter similar to or lower than that of the laser-under-test, which is a demanding requirement for many laser laboratories, and/or have limited measurement resolution. Here we show a high-resolution and reference-source-free measurement method of timing jitter spectra of optical frequency combs using an optical fibre delay line and optical carrier interference. The demonstrated method works well for both mode-locked oscillators and supercontinua, with 2 × 10-9 fs2/Hz (equivalent to -174 dBc/Hz at 10-GHz carrier frequency) measurement noise floor. The demonstrated method can serve as a simple and powerful characterization tool for timing jitter PSDs of various comb sources including mode-locked oscillators, supercontinua and recently emerging Kerr-frequency combs; the jitter measurement results enabled by our method will provide new insights for understanding and optimizing timing noise in such comb sources.

8.
Opt Express ; 24(25): 28815-28828, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958525

RESUMO

We investigate Mie resonances of a diamond nano-resonator as a means to enhance the pumping and detection efficiency of shallow nitrogen-vacancy color centers. We show it is possible to tune a couple of high-order modes of a single resonator to each absorption and emission spectrum of the color center, and thereby the resonator plays a dual role of pump field concentration and emission field guiding. Furthermore superposition of the resonator field and the uncoupled near field results in even stronger pump intensity in the shallow top layer of the resonator. We also examine possible coupling between adjacent resonators when they form a periodic array. This approach allows us to achieve lower excitation power and higher signal intensity at local sites defined by resonators providing a way to enhance wide-field metrology in the sampled region of shallow color centers.

9.
Phys Rev Lett ; 110(17): 173203, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679724

RESUMO

Collisions of 6Li2 molecules with free 6Li atoms reveal a striking deviation from universal predictions based on long-range van der Waals interactions. Li2 closed-channel molecules are formed in the highest vibrational state near a narrow Feshbach resonance and decay via two-body collisions with Li2, Li, and Na. For Li2 + Li2 and Li2 + Na, the decay rates agree with the universal predictions of the quantum Langevin model. In contrast, the rate for Li2 + Li is exceptionally small, with an upper bound 10 times smaller than the universal prediction. This can be explained by the low density of available decay states in systems of light atoms [G. Quéméner, J.-M. Launay, and P. Honvault, Phys. Rev. A 75, 050701 (2007)], for which such collisions have not been studied before.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(3 Pt 2): 036217, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22060485

RESUMO

We investigate the scaling behavior of the relaxation process for an unstable state near a subcritical Hopf bifurcation point. When the parametric modulation is applied to a magneto-optical trap, the atomic cloud becomes unstable and decays to the dynamic bistable states. Near the subcritical Hopf bifurcation point, we experimentally show that the relaxation process exhibits the scaling behavior; the relaxation time shows a scaling exponent of -1.002 (±0.024). We also present the passage time distribution for the statistical interpretation of the escape process associated with the relaxation of the unstable state. We compare the experimental results to the numerical and analytic results, demonstrating the good agreement between them.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(3 Pt 1): 031134, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21230052

RESUMO

We show that an atomic system in a periodically modulated optical trap displays an ideal mean-field symmetry-breaking transition. The symmetry is broken with respect to time translation by the modulation period. We describe experimental observations and develop a full microscopic theory of the observed critical phenomena. The transition is explained as resulting from the interplay of the long-range interatomic interaction and nonequilibrium fluctuations in the strongly modulated system. The observations, including anomalous fluctuations in the symmetry broken phase, are fully described by the theory.

12.
Phys Rev Lett ; 96(15): 150601, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16712140

RESUMO

We have observed spontaneous symmetry breaking of the population of Brownian particles between two moving potentials in the spatiotemporally symmetric system. Cold atoms preferentially occupy one of the dynamic double-well potentials, produced in the parametrically driven dissipative magneto-optical trap far from equilibrium, above a critical number of atoms. We find that the population asymmetry, which may be interpreted as the biased Brownian motion, can be qualitatively described by the mean-field Ising-class phase transition. This in situ study may be useful for investigation of dynamic phase transition or temporal behavior of critical phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...