Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613608

RESUMO

A naphthalene imide (1) and a naphthalene (2) bearing two pyrrole units have been synthesized, respectively, as anion receptors. It was revealed by 1H NMR spectral studies carried out in CD3CN that receptors 1 and 2 bind various anions via hydrogen bonds using both C-H and N-H donors. Compared with receptor 2, receptor 1 shows higher affinity for the test anions because of the enhanced acidity of its pyrrole NH and naphthalene CH hydrogens by the electron-withdrawing imide substituent. Molecular mechanics computations demonstrate that the receptors contact the halide anions via only one of the two respective available N-H and C-H donors whereas they use all four donors for binding of the oxyanions such as dihydrogen phosphate and hydrogen pyrophosphate. Receptor 1, a push-pull conjugated system, displays a strong fluorescence centered at 625 nm, while receptor 2 exhibits an emission with a maximum peak at 408 nm. In contrast, upon exposure of receptors 1 and 2 to the anions in question, their fluorescence was noticeably quenched particularly with relatively basic anions including F-, H2PO4-, HP2O73-, and HCO3-.


Assuntos
Fosfatos , Pirróis , Ânions/química , Fosfatos/química , Espectroscopia de Ressonância Magnética , Ligação de Hidrogênio
2.
Chem Soc Rev ; 49(3): 865-907, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31957756

RESUMO

Supramolecular chemistry is a central topic in modern chemistry. It touches on many traditional disciplines, such as organic chemistry, inorganic chemistry, physical chemistry, materials chemistry, environmental chemistry, and biological chemistry. Supramolecular hosts, inter alia macrocyclic hosts, play critical roles in supramolecular chemistry. Calix[4]pyrroles, non-aromatic tetrapyrrolic macrocycles defined by sp3 hybridized meso bridges, have proved to be versatile receptors for neutral species, anions, and cations, as well as ion pairs. Compared to the parent system, octamethylcalix[4]pyrrole and its derivatives bearing simple appended functionalities, strapped calix[4]pyrroles typically display enhanced binding affinities and selectivities. In this review, we summarize advances in the design and synthesis of strapped calix[4]pyrroles, as well as their broad utility in molecular recognition, supramolecular extraction, separation technology, ion transport, and as agents capable of inhibiting cancer cell proliferation. Future challenges within this sub-field are also discussed.


Assuntos
Calixarenos/química , Calixarenos/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Ânions/química , Apoptose , Cátions/química , Permeabilidade da Membrana Celular , Cristalização , Modelos Moleculares , Estrutura Molecular , Compostos Orgânicos/química , Relação Estrutura-Atividade , Termodinâmica
3.
Chem Sci ; 11(31): 8288-8294, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34094182

RESUMO

Two-phenoxy walled calix[4]pyrroles 1 and 2 strapped with small rigid linkers containing pyridine and benzene, respectively, have been synthesized. 1H NMR spectroscopic analyses carried out in CDCl3 revealed that both of receptors 1 and 2 recognize only F- and HCO3 - among various test anions with high preference for HCO3 - (as the tetraethylammonium, TEA+ salt) relative to F- (as the TBA+ salt). The bound HCO3 - anion was completely released out of the receptors upon the addition of F- (as the tetrabutylammonium, TBA+ salt) as a result of significantly enhanced affinities and selectivities of the receptors for F- once converted to the TEAHCO3 complexes. Consequently, relatively stable TEAF complexes of receptors 1 and 2 were formed via anion metathesis occurring within the receptor cavities. By contrast, the direct addition of TEAF to receptors 1 and 2 produces different complexation products initially, although eventually the same TEAF complexes are produced as via sequential TEAHCO3 and TBAF addition. These findings are rationalized in terms of the formation of different ion pair complexes involving interactions both inside and outside of the core receptor framework.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...