Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 129(2): 374-381, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37280413

RESUMO

BACKGROUND: Postoperative minimal residual disease (MRD) detection using circulating-tumour DNA (ctDNA) requires a highly sensitive analysis platform. We have developed a tumour-informed, hybrid-capture ctDNA sequencing MRD assay. METHODS: Personalised target-capture panels for ctDNA detection were designed using individual variants identified in tumour whole-exome sequencing of each patient. MRD status was determined using ultra-high-depth sequencing data of plasma cell-free DNA. The MRD positivity and its association with clinical outcome were analysed in Stage II or III colorectal cancer (CRC). RESULTS: In 98 CRC patients, personalised panels for ctDNA sequencing were built from tumour data, including a median of 185 variants per patient. In silico simulation showed that increasing the number of target variants increases MRD detection sensitivity in low fractions (<0.01%). At postoperative 3-week, 21.4% of patients were positive for MRD by ctDNA. Postoperative positive MRD was strongly associated with poor disease-free survival (DFS) (adjusted hazard ratio 8.40, 95% confidence interval 3.49-20.2). Patients with a negative conversion of MRD after adjuvant therapy showed significantly better DFS (P < 0.001). CONCLUSION: Tumour-informed, hybrid-capture-based ctDNA assay monitoring a large number of patient-specific mutations is a sensitive strategy for MRD detection to predict recurrence in CRC.


Assuntos
DNA Tumoral Circulante , Neoplasias Colorretais , Humanos , DNA Tumoral Circulante/genética , Neoplasia Residual/genética , Intervalo Livre de Doença , Mutação , Biomarcadores Tumorais/genética , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética
2.
Clin Epigenetics ; 14(1): 140, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36320085

RESUMO

BACKGROUND: The factors affecting cardioprotective collateral circulation are still incompletely understood. Recently, characteristics, such as CpG methylation of cell-free DNA (cfDNA), have been reported as markers with clinical utility. The aim of this study was to evaluate whether cfDNA methylation patterns are associated with the grade of coronary collateral circulation (CCC). RESULT: In this case-control study, clinical and angiographic data were obtained from 143 patients (mean age, 58 years, male 71%) with chronic total coronary occlusion. Enzymatic methyl-sequencing (EM-seq) libraries were prepared using the cfDNA extracted from the plasma. Data were processed to obtain the average methylation fraction (AMF) tables of genomic regions from which blacklisted regions were removed. Unsupervised analysis of the obtained AMF values showed that some of the changes in methylation were due to CCC. Through random forest preparation process, 256 differentially methylated region (DMR) candidates showing strong association with CCC were selected. A random forest classifier was then constructed, and the area under the curve of the receiver operating characteristic curve indicated an appropriate predictive function for CCC. Finally, 20 DMRs were identified to have significantly different AMF values between the good and poor CCC groups. Particularly, the good CCC group exhibited hypomethylated DMRs. Pathway analysis revealed five pathways, including TGF-beta signaling, to be associated with good CCC. CONCLUSION: These data have demonstrated that differential hypomethylation was identified in dozens of cfDNA regions in patients with good CCC. Our results support the clinical utility of noninvasively obtained epigenetic signatures for predicting collateral circulation in patients with vascular diseases.


Assuntos
Ácidos Nucleicos Livres , Doença da Artéria Coronariana , Humanos , Masculino , Pessoa de Meia-Idade , Estudos de Casos e Controles , Circulação Colateral , Metilação de DNA , Feminino
3.
Biomolecules ; 11(7)2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34356635

RESUMO

DNA methylation is an epigenetic mechanism that is related to mammalian cellular differentiation, gene expression regulation, and disease. In several studies, DNA methylation has been identified as an effective marker to identify differences between cells. In this review, we introduce single-cell DNA-methylation profiling methods, including experimental strategies and approaches to computational data analysis. Furthermore, the blind spots of the basic analysis and recent alternatives are briefly described. In addition, we introduce well-known applications and discuss future development.


Assuntos
Metilação de DNA , Perfilação da Expressão Gênica , Análise de Célula Única , Animais , Humanos
4.
PLoS One ; 15(5): e0232754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379795

RESUMO

Analyzing cell-free DNA (cfDNA) as a source of circulating tumor DNA is useful for diagnosing or monitoring patients with cancer. However, the concordance between cfDNA within liquid biopsy and genomic DNA (gDNA) within tumor tissue biopsy is still under debate. To evaluate the concordance in a clinical setting, we enrolled 54 patients with metastatic colorectal cancer and analyzed their plasma cfDNA, gDNA from peripheral blood mononuclear cells (PBMC), and gDNA from available matched tumor tissues using ultra-deep sequencing targeting 10 genes (38-kb size) recurrently mutated in colorectal cancer. We first established a highly reliable cut-off value using reference material. The sensitivity of detecting KRAS hotspot mutations in plasma was calculated as 100%, according to digital droplet PCR. We could selectively detect clinically important somatic alterations with a variant allele frequency as low as 0.18%. We next compared somatic mutations of the 10 genes between cfDNA and genomic DNA from tumor tissues and observed an overall 93% concordance rate between the two types of samples. Additionally, the concordance rate of patients with the time interval between liquid biopsy and tumor tissue biopsy within 6 months and no prior exposure to chemotherapy was much higher than those without. The patients with KRAS mutant fragments in plasma had poor prognosis than those without the mutant fragments (33 months vs. 63 months; p<0.05). Consequently, the profiling with our method could achieve highly concordant results and may facilitate the surveillance of the tumor status with liquid biopsy in CRC patients.


Assuntos
Ácidos Nucleicos Livres/genética , DNA Tumoral Circulante/genética , Neoplasias Colorretais/genética , Adulto , Idoso , Neoplasias Colorretais/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
5.
ACS Omega ; 4(22): 19953-19958, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31788628

RESUMO

Recombinase polymerase amplification (RPA) is an isothermal DNA amplification method with broad applications as a point-of-care test and in molecular biology techniques. Currently, most of the applications are focused on target-specific amplification. Because RPA has the advantage of amplifying DNA under isothermal conditions, we utilized RPA as a DNA library amplification tool. In this study, we used a sheared genomic DNA library and an oligonucleotide (oligo) library for the comparison of polymerase chain reaction and RPA. For the sheared DNA library, we observed biased amplification after RPA was conducted. Thus, to amplify the size-variable DNA library uniformly, we introduced a linear amplification strategy with RPA and successfully improved the uniformity. On the other hand, using the same-sized oligo library, we confirmed that RPA amplified this library uniformly without modification of the protocol. These results demonstrate that RPA can be applied not only to amplify a specific target as previously demonstrated but also to amplify a complex DNA library composed of a large number of different DNA molecules.

6.
ACS Synth Biol ; 8(3): 596-600, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30726053

RESUMO

A typical molecular cloning procedure requires Sanger sequencing for sequence validation, which is cost-prohibitive and labor-intensive for large-scale clone analysis in genotype-phenotype studies. Here we present the cost-effective clone analysis platform TnClone, which uses next-generation sequencing based on Tn5 tagmentation to rapidly analyze a large number of clones from cell lysates. This method bypasses the extensive plasmid purification step. We also developed a user-friendly graphical user interface and provided general guidelines for conducting validation experiments. We tested our program with 1023 plasmids (222 from cell lysates and 801 from purified clones) and achieved 92% and 99.3% sensitivity with cell lysates and purified DNA, respectively. Our platform provides rapid turnaround with minimal hands-on time for secondary evaluation, as next-generation sequencing technology continues to evolve.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Software , Transposases/genética , Proteína 9 Associada à CRISPR/genética , Clonagem Molecular/métodos , Confiabilidade dos Dados , Escherichia coli/genética , Sequenciamento de Nucleotídeos em Larga Escala/economia , Inteínas/genética , Plasmídeos/genética , Sensibilidade e Especificidade , Análise de Sequência de DNA/economia , Anticorpos de Cadeia Única/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...