Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pers Med ; 11(7)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34357144

RESUMO

Purpose: Cytochrome P450 (CYP) is involved in the metabolism of statins; CYP3A5 is the main enzyme responsible for lipophilic statin metabolism. However, the evidence of the association between CYP3A5*3 polymorphism and the risk of statin-induced adverse events remains unclear. Therefore, this study aimed to perform a systematic review and meta-analysis to investigate the relationship between the CYP3A5*3 polymorphism and the risk of statin-induced adverse events. Methods: The PubMed, Web of Science, and EMBASE databases were searched for qualified studies published until August 2020. Observational studies that included the association between statin-induced adverse events and the CYP3A5*3 polymorphism were reviewed. The odds ratios (ORs) and 95% confidence intervals (CIs) were evaluated to assess the strength of the relationship. The Mantel-Haenszel method was used to provide the pooled ORs. Heterogeneity was estimated with I2 statistics and publication bias was determined by Begg's and Egger's test of the funnel plot. Data analysis was performed using Review Manager (version 5.4) and R Studio (version 3.6). Results: In total, data from 8 studies involving 1614 patients were included in this meta-analysis. The CYP3A5*3 polymorphism was found to be associated with the risk of statin-induced adverse events (*3/*3 vs. *1/*1 + *1/*3: OR = 1.40, 95% CI = 1.08-1.82). For myopathy, the pooled OR was 1.30 (95% CI: 0.96-1.75). The subgroup analysis of statin-induced myopathy revealed a trend, which did not achieve statistical significance. Conclusions: This meta-analysis demonstrated that the CYP3A5*3 polymorphism affected statin-induced adverse event risk. Therefore, CYP3A5 genotyping may be useful to predict statin toxicity.

2.
Clin Ther ; 43(5): 836-843.e4, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33840516

RESUMO

PURPOSE: Two common variants, CYP2C9*2 (Arg144Cys, rs1799853) and CYP2C9*3 (Ile359Leu, rs1057910), are known to reduce the catalytic function of the CYP2C9 enzyme. Because impaired catalytic function is likely to affect sulfonylurea metabolism, it is predictable that CYP2C9 loss-of-function alleles may increase the risk of sulfonylurea-induced hypoglycemia. This systematic review and meta-analysis aimed to assess the association between CYP2C9 genotype and hypoglycemia among patients with type 2 diabetes mellitus (T2DM) receiving sulfonylurea. METHODS: We searched for studies on the association between CYP2C9 genotype and sulfonylurea-induced hypoglycemia among patients with T2DM, published through August 7, 2020, using PubMed, Web of Science, and EMBASE. Odds ratios (ORs) and 95% CIs were calculated. FINDINGS: Five cohort studies and 2 case-control studies were included, and the total number of patients analyzed in this meta-analysis was 2769. The CYP2C9 variant alleles were associated with an increase in sulfonylurea-induced hypoglycemia compared with wild-type homozygote (OR = 1.24; 95% CI, 1.03-1.48). Compared with CYP2C9 wild-type homozygotes, CYP2C9*2 allele was associated with increased incidence of hypoglycemia (OR = 1.85; 95% CI, 1.18-2.89), whereas the CYP2C9*3 allele failed to show the statistical significance (OR = 1.67; 95% CI, 0.40-6.86; P = 0.48). IMPLICATIONS: On the basis of these results, CYP2C9 genotyping may be useful for predicting the risk of hypoglycemia during sulfonylurea treatment for T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Hipoglicemia , Alelos , Citocromo P-450 CYP2C9/genética , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Genótipo , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/genética , Compostos de Sulfonilureia/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...