Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 42(12): 3197-3207, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31378945

RESUMO

The growth of rice in submerged soils depends on its ability to form continuous gas channels-aerenchyma-through which oxygen (O2 ) diffuses from the shoots to aerate the roots. Less well understood is the extent to which aerenchyma permits venting of respiratory carbon dioxide (CO2 ) in the opposite direction. Large, potentially toxic concentrations of dissolved CO2 develop in submerged rice soils. We show using X-ray computed tomography and image-based mathematical modelling that CO2 venting through rice roots is far greater than thought hitherto. We found rates of venting equivalent to a third of the daily CO2 fixation in photosynthesis. Without this venting through the roots, the concentrations of CO2 and associated bicarbonate (HCO3- ) in root cells would have been well above levels known to be toxic to roots. Removal of CO2 and hence carbonic acid (H2 CO3 ) from the soil was sufficient to increase the pH in the rhizosphere close to the roots by 0.7 units, which is sufficient to solubilize or immobilize various nutrients and toxicants. A sensitivity analysis of the model showed that such changes are expected for a wide range of plant and soil conditions.


Assuntos
Dióxido de Carbono/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Solo/química , Modelos Biológicos
2.
Plant Soil ; 401: 109-123, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27429478

RESUMO

BACKGROUND AND AIM: Recycled sources of phosphorus (P), such as struvite extracted from wastewater, have potential to substitute for more soluble manufactured fertilisers and help reduce the long-term threat to food security from dwindling finite reserves of phosphate rock (PR). This study aimed to determine whether struvite could be a component of a sustainable P fertiliser management strategy for arable crops. METHODS: A combination of laboratory experiments, pot trials and mathematical modelling of the root system examined the P release properties of commercial fertiliser-grade struvite and patterns of P uptake from a low-P sandy soil by two different crop types, in comparison to more soluble inorganic P fertilisers (di-ammonium phosphate (DAP) and triple super phosphate (TSP)). RESULTS: Struvite had greatly enhanced solubility in the presence of organic acid anions; buckwheat, which exudes a high level of organic acids, was more effective at mobilising struvite P than the low level exuder, spring wheat. Struvite granules placed with the seed did not provide the same rate of P supply as placed DAP granules for early growth of spring wheat, but gave equivalent rates of P uptake, yield and apparent fertiliser recovery at harvest, even though only 26 % of struvite granules completely dissolved. Fertiliser mixes containing struvite and DAP applied to spring wheat have potential to provide both optimal early and late season P uptake and improve overall P use efficiency. CONCLUSIONS: We conclude that the potential resource savings and potential efficiency benefits of utilising a recycled slow release fertiliser like struvite offers a more sustainable alternative to only using conventional, high solubility, PR-based fertilisers.

3.
Bull Math Biol ; 78(1): 52-71, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26690921

RESUMO

The lymphatic system returns fluid to the bloodstream from the tissues to maintain tissue fluid homeostasis. Lymph nodes distributed throughout the system filter the lymphatic fluid. The afferent and efferent lymph flow conditions of lymph nodes can be measured in experiments; however, it is difficult to measure the flow within the nodes. In this paper, we present an image-based modelling approach to investigating how the internal structure of the node affects the fluid flow pathways within the node. Selective plane illumination microscopy images of murine lymph nodes are used to identify the geometry and structure of the tissue within the node and to determine the permeability of the lymph node interstitium to lymphatic fluid. Experimental data are used to determine boundary conditions and optimise the parameters for the model. The numerical simulations conducted within the model are implemented in COMSOL Multiphysics, a commercial finite element analysis software. The parameter fitting resulted in the estimate that the average permeability for lymph node tissue is of the order of magnitude of [Formula: see text]. Our modelling shows that the flow predominantly takes a direct path between the afferent and efferent lymphatics and that fluid is both filtered and absorbed across the blood vessel boundaries. The amount that is absorbed or extravasated in the model is dependent on the efferent lymphatic lumen fluid pressure.


Assuntos
Linfonodos/fisiologia , Linfa/fisiologia , Modelos Biológicos , Animais , Análise de Elementos Finitos , Homeostase , Processamento de Imagem Assistida por Computador , Linfonodos/diagnóstico por imagem , Vasos Linfáticos/fisiologia , Conceitos Matemáticos , Camundongos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...