Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Asian J Nanosci Mater ; 4(3): 229-239, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38192303

RESUMO

Iron nanoparticles (MNPs) are known to induce membrane damage and apoptosis of cancer cells. In our study we determined whether FDG coupled with iron oxide magnetic nanoparticles can exert the same destructive effect on cancer cells. This research study presents data involving NIC-H727 human lung, bronchus epithelial cells exposed to conjugated fluorodeoxyglucose conjugated with iron-oxide magnetic nanoparticles and indocyanine green (ICG) dye (FDG-MNP-ICG), with and without the application of a magnetic field. Cell viability inferred from MTT assay revealed that FDG-MNPs had no significant toxicity towards noncancerous NIC-H727 human lung, bronchus epithelial cells. However, percentage cell death was much higher using a magnetic field, for the concentration of FDG-MNP-ICC used in our experiments. Magnetic field was able to destroy cells containing MNPs, while MNPs alone had significantly lower effects. Additionally, MNPs alone in these low concentrations had less adverse effects on healthy (non-target) cells.

2.
Proc Inst Mech Eng H ; 234(4): 323-336, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31774350

RESUMO

In this study, we present the design considerations of a device to assist in the potential treatment of hemorrhagic stroke with the aim of stopping blood from flowing out into brain tissue. We present and model three designs for the clinical scenarios when saccular aneurysms rupture in the middle cerebral artery in the brain. We evaluate and model these three designs using computer aided design software, SolidWorks, which allows the devices to be tested using finite element analysis and also enables us to justify that the materials chosen were suitable for potential use. Computational fluid dynamics modelling were used to demonstrate and analyse the flow of blood through the artery under conditions of normal and ruptured states. We conclude that our device could potentially be useful in the treatment of hemorrhagic stroke, and the modelling process is useful in assisting in determining the performance of our devices.


Assuntos
Desenho de Equipamento , Acidente Vascular Cerebral Hemorrágico/terapia , Encéfalo/fisiopatologia , Simulação por Computador , Acidente Vascular Cerebral Hemorrágico/fisiopatologia , Humanos , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...