Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Genet ; 56(9): 1890-1902, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39227744

RESUMO

Functional genomic screens in two-dimensional cell culture models are limited in identifying therapeutic targets that influence the tumor microenvironment. By comparing targeted CRISPR-Cas9 screens in a two-dimensional culture with xenografts derived from the same cell line, we identified MEN1 as the top hit that confers differential dropout effects in vitro and in vivo. MEN1 knockout in multiple solid cancer types does not impact cell proliferation in vitro but significantly promotes or inhibits tumor growth in immunodeficient or immunocompetent mice, respectively. Mechanistically, MEN1 knockout redistributes MLL1 chromatin occupancy, increasing H3K4me3 at repetitive genomic regions, activating double-stranded RNA expression and increasing neutrophil and CD8+ T cell infiltration in immunodeficient and immunocompetent mice, respectively. Pharmacological inhibition of the menin-MLL interaction reduces tumor growth in a CD8+ T cell-dependent manner. These findings reveal tumor microenvironment-dependent oncogenic and tumor-suppressive functions of MEN1 and provide a rationale for targeting MEN1 in solid cancers.


Assuntos
Linfócitos T CD8-Positivos , Sistemas CRISPR-Cas , Histona-Lisina N-Metiltransferase , Proteínas Proto-Oncogênicas , Microambiente Tumoral , Microambiente Tumoral/genética , Animais , Humanos , Camundongos , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Neoplasias/genética , Neoplasias/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Feminino
2.
Sci Rep ; 12(1): 7654, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35538129

RESUMO

Considering the emergence of SARS-CoV-2 variants and low vaccine access and uptake, minimizing human interactions remains an effective strategy to mitigate the spread of SARS-CoV-2. Using a functional principal component analysis, we created a multidimensional mobility index (MI) using six metrics compiled by SafeGraph from all counties in Illinois, Ohio, Michigan and Indiana between January 1 to December 8, 2020. Changes in mobility were defined as a time-updated 7-day rolling average. Associations between our MI and COVID-19 cases were estimated using a quasi-Poisson hierarchical generalized additive model adjusted for population density and the COVID-19 Community Vulnerability Index. Individual mobility metrics varied significantly by counties and by calendar time. More than 50% of the variability in the data was explained by the first principal component by each state, indicating good dimension reduction. While an individual metric of mobility was not associated with surges of COVID-19, our MI was independently associated with COVID-19 cases in all four states given varying time-lags. Following the expiration of stay-at-home orders, a single metric of mobility was not sensitive enough to capture the complexity of human interactions. Monitoring mobility can be an important public health tool, however, it should be modelled as a multidimensional construct.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Densidade Demográfica , Saúde Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA