Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23603, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226232

RESUMO

The regression relationship between water discharge rates and nutrient concentrations can provide a quick and straightforward way to estimate nutrient loads. However, recent studies indicated that the relationship might produce large biases in load estimates and, therefore, may not be applicable in certain types of cases. The goal of this study is to explore the theoretical reasons behind the selective applicability of the regression relationship between flow rates and nitrate + nitrite concentrations. For this study, we examined daily flow and nitrate + nitrite concentration observations made at the outlets of 22 watersheds monitored by the Heidelberg Tributary Loading Program (HTLP). The statistical relationship between the flow rates and concentrations was explored using regression equations offered by the LOAD ESTimator (LOADEST). Results demonstrated that the use of the regression equations provided nitrate + nitrite load estimates at acceptable accuracy levels (NSE≥0.35 and |PBIAS|≤30.0%) in 14 watersheds (64 % of 22 study watersheds). The regression relationships provided highly biased results at eight watersheds (36 %), implying their limited applicability. The heteroscedasticity of the residuals led to the high bias and resulting inaccurate regression, which was commonly found in watersheds where low flow had high nitrate + nitrite concentration variations. Conversely, the regression relationships provided acceptable accuracy for watersheds that had a relatively constant variance of the nitrate + nitrite concentrations. The results indicate that the homoscedasticity of residuals is the key assumption to be satisfied to estimate nitrate + nitrite loads from a statistical regression between flow discharge and nitrate + nitrite concentrations. The transport capacity (capacity-limited) concept implicitly assumed in the regression relationship between flow discharge and nitrate + nitrite concentrations is not always applicable, especially to agricultural areas in which nitrate + nitrite loads are highly variable depending on management practices (supply-limited). The findings suggest that the regression relationship should be carefully applied to areas in which intensive agricultural activities, including crop management and conservation practices, are implemented. Thus, the transport capacity concept is reasonably regarded to contribute to the homoscedasticity of residuals.

2.
Sci Total Environ ; 904: 166331, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37595899

RESUMO

Subsurface drainage systems are effective management practices employed to remove excess soil water, thereby improving soil aeration and crop productivity. However, these systems can also contribute to water quality issues by enhancing nitrate leaching and loads from agricultural fields. The Soil and Water Assessment Tool (SWAT) is commonly used to assess nitrate loads and long-term water quality impacts from agricultural watersheds. However, the current SWAT model oversimplifies nitrate transport processes by assuming a linear relationship between nitrate concentrations in tile flow and soil nitrate content. It also neglects the time lag between nitrate loading and transport with the flow. This study aimed to enhance the accuracy of nitrate load prediction by revising the subsurface drainage routine in the SWAT model. The revised routine was tested using flow and nitrate load measurements from a typical tile-drained watershed in east-central Illinois, U.S. The results demonstrated that the revised SWAT nitrate routine outperformed the current one in simulating nitrate transport at field and watershed scales. The revised routine improved the nitrate load prediction from an "unacceptable" to a "satisfactory" or "good" rating on the field scale. A sensitivity analysis conducted using the revised nitrate module showed the parameters directly associated with transpiration, groundwater discharge to the reach, the lag time of tile flow, and channel flow hydraulics were the most sensitive in nitrate load simulation. In addition, different tile depth scenarios were modeled to evaluate variation in the amount of surface runoff, tile flow, and nitrate loads by the surface flow and tile flow. The results of tile configuration scenarios agreed with understanding the tile flow process. The test results demonstrated the potential of the revised SWAT nitrate module as a tool to accurately evaluate the effects of tile drainage systems on water quality.

3.
Sci Total Environ ; 883: 163713, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37105475

RESUMO

The water quality of a waterbody is determined by internal hydrodynamic processes as well as external loadings. Understanding the interaction between the external loading and internal process of a waterbody is essential for efficient water management and water quality improvement. Studies and efforts have focused on water and nutrient loading from drainage watersheds, but the contribution of the waterbody's internal process to water quality is often ignored and not well documented. This study investigated how the water quality of Lake Okeechobee is controlled by external and internal factors using statistical and numerical modeling approaches. Water quantity and quality observed at the outlets of the Lake Okeechobee drainage basins and 19 monitoring sites located within the lake were statistically analyzed using multilinear regression. A three-dimensional numerical model, namely Environmental Fluid Dynamics Code (EFDC), was calibrated to the observations to mathematically represent the lake's internal hydrodynamic process. The multilinear regression found that the water quality was the most sensitive to air temperature, the total phosphorus (TP) concentration of inflow entering the lake from the Kissimmee River basins, and the amount of outflow discharged from the lake among external factors. However, the regression models and their explanatory power were substantially varied by the monitoring stations. The model parameter sensitivity analysis of the calibrated EFDC model showed that model parameters related to the lake's internal algal processes including algal growth, predation, and basal metabolism rates had greater impacts on algal biomass than other model parameters controlling nutrient-related processes such as nutrient half-saturation and hydrolysis rates. The EFDC input data sensitivity analysis found that wind (speed) is the major driving force for the internal hydrodynamic processes; its impact on algal biomass was greater than those of the external loadings. In addition, the algal biomass was found to have an inverse relationship with wind-induced horizontal currents. The results demonstrate the dynamic contribution of the internal and external drivers to the water quality of Lake Okeechobee, suggesting the need to consider both internal hydrodynamic and external loading processes for efficient water quality improvement of the lake.

4.
Sci Rep ; 12(1): 9216, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654952

RESUMO

Soluble nitrogen is highly mobile in soil and susceptible to leaching. It is important to identify nitrogen transport pathways so that the sources can be efficiently targeted in environment management. This study quantified the contribution of direct runoff and baseflow to nitrate + nitrite loading by separating flow and nitrate + nitrite concentration measurements into two periods depending on whether only baseflow was present or not using baseflow separation methods. When both direct runoff and baseflow were present in streamflow, their nitrate + nitrite concentrations were assumed based on the hydrological reasoning that baseflow does not change rapidly, and streamflow mostly consists of direct runoff within a rainfall event. For this study, we obtained and investigated daily flow and nitrate + nitrite concentration observations made at the outlets of 22 watersheds located in the Western Lake Erie area. Results showed that baseflow was responsible for 26 to 77% of the nitrate + nitrite loads. The relative nitrate + nitrite load contributions of direct runoff and baseflow substantially varied with the sizes of drainage areas and agricultural land uses. Increases in drainage areas tend to prolong the travel time of surface runoff and thus help its reinfiltration into soil, which then could increase the baseflow contribution. In addition, the artificial drainage networks common in the agricultural fields of the study areas would promote the drainage of nutrient-laden excess water from soils. Such findings suggest the need for environmental management customized considering nitrogen transport pathways.


Assuntos
Lagos , Nitrogênio , Nitratos/análise , Nitritos , Solo
5.
Sci Total Environ ; 798: 149336, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375258

RESUMO

Rain barrels/cisterns, a popular type of low impact development (LID) practice, can restore urban hydrological processes and decrease municipal water use by harvesting roof runoff for later use, such as landscape irrigation. However, tools to assist decision makers in creating efficient rainwater harvesting and reuse strategies are limited. This study improved the Soil and Water Assessment Tool (SWAT) in simulating the subdaily hydrological impacts of rainwater harvesting for landscape irrigation with rain barrels/cisterns, including the simulation of rainwater harvesting with rain barrels/cisterns, rainwater reuse for auto landscape irrigation, evapotranspiration, initial abstraction, impervious area, soil profile, and lawn management operation. The improved SWAT was applied in the urbanized Brentwood watershed (Austin, TX) to evaluate its applicability and investigate the impacts of rainwater harvesting and reuse strategies on the reductions and reduction efficiencies (reductions per volume of rain barrels/cisterns implemented) of field scale runoff (peak and depth) and watershed scale streamflow (peak and volume) for two storm events. Scenarios explored included different sizes of rain barrels/cisterns, percentages of rooftop areas with rain barrels/cisterns implemented, auto landscape irrigation rates, and landscape irrigation starting times. The performance of rainwater harvesting and reuse strategies, which is determined by features of fields, watersheds, and storm events, varied for different reduction goals (streamflow or runoff, and peak or depth/volume). For instance, the scenario with rain barrel/cistern sizes of 7.5 mm (design runoff depth from treated roof area) and the scenario with 10% of suitable area implemented with rain barrels/cisterns provided the highest peak streamflow reduction efficiency and total streamflow volume reduction efficiency at the watershed scale, respectively for the smaller storm event. To achieve sustainable urban stormwater management, the improved SWAT model has enhanced capability to help stakeholders create efficient rainwater harvesting and reuse strategies to reduce field scale runoff and watershed scale streamflow.


Assuntos
Solo , Movimentos da Água , Hidrologia , Chuva , Água
6.
PLoS One ; 14(12): e0226229, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31856257

RESUMO

Vermicomposting has been recommended as an eco-friendly method to transform organic waste into nutrient resources with minimum energy input. However, odor and pest issues associated with this method limit the use of vermicomposting, especially in indoor conditions. This study evaluated the effectiveness of applying hypochlorous acid (HOCl) to deodorize the vermicomposting process and improve the breeding environment for earthworms (Eisenia fetida). The deodorization performance of HOCl was compared by measuring the amount of ammonia (NH3) and amine (R-NH2) released from the decaying process of two types of food waste: HOCl-treated (HTW) waste and non-treated waste (NTW). The total and individual weights of earthworms in the waste treated with HOCl was measured to evaluate the impact on earthworm reproduction after applying HOCl. The results showed that HOCl application could reduce NH3 by 40% and R-NH2 by 80%, and increase the earthworm population size and total weight by up to 29% and 92%, respectively, compared to the control group. These results suggest that HOCl application is potentially an efficient method to control the odor and to boost earthworm reproduction and thus facilitate vermicomposting for improved food waste treatment and environmental quality.


Assuntos
Compostagem/métodos , Alimentos , Ácido Hipocloroso/farmacologia , Odorantes/prevenção & controle , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/metabolismo , Resíduos , Animais , Biodegradação Ambiental/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos
7.
Sci Rep ; 9(1): 4974, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30899064

RESUMO

The quantification of uncertainty in the ensemble-based predictions of climate change and the corresponding hydrological impact is necessary for the development of robust climate adaptation plans. Although the equifinality of hydrological modeling has been discussed for a long time, its influence on the hydrological analysis of climate change has not been studied enough to provide a definite idea about the relative contributions of uncertainty contained in both multiple general circulation models (GCMs) and multi-parameter ensembles to hydrological projections. This study demonstrated that the impact of multi-GCM ensemble uncertainty on direct runoff projections for headwater watersheds could be an order of magnitude larger than that of multi-parameter ensemble uncertainty. The finding suggests that the selection of appropriate GCMs should be much more emphasized than that of a parameter set among behavioral ones. When projecting soil moisture and groundwater, on the other hand, the hydrological modeling equifinality was more influential than the multi-GCM ensemble uncertainty. Overall, the uncertainty of GCM projections was dominant for relatively rapid hydrological components while the uncertainty of hydrological model parameterization was more significant for slow components. In addition, uncertainty in hydrological projections was much more closely associated with uncertainty in the ensemble projections of precipitation than temperature, indicating a need to pay closer attention to precipitation data for improved modeling reliability. Uncertainty in hydrological component ensemble projections showed unique responses to uncertainty in the precipitation and temperature ensembles.

8.
Sci Total Environ ; 648: 164-175, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30114587

RESUMO

Terrestrial fate and transport processes of E. coli can be complicated by human activities like urbanization or livestock grazing. There is a critical need to address contributing sources of bacterial contamination, properly assess the management of critical sources, and ultimately reduce E. coli concentrations in impaired water bodies. In particular, characterization of wildlife animal contributions and other "background" input sources of microbial pollution are highly uncertain and data are scarce. This study attempts to identify critical sources of E. coli and the efficacy of conservation practices for mitigating E. coli concentrations in the Arroyo Colorado watershed, Texas, using a process-based hydrologic and water quality model. We propose to incorporate a bacterial source tracking assessment into the modeling framework to fill the gap in data on wildlife and human contribution. In addition, other sources identified through a GIS survey, national census, and local expert knowledge were incorporated into the model as E. coli sources. Results suggest that simulated distribution of E. coli sources significantly improved after incorporating this enhanced data on E. coli sources into the model (R2 = 0.90) compared to the SWAT result without BST (R2 = 0.59). Scenario assessments indicate that wildlife contributions may remain significant despite land use change and urbanization, expected to mostly occur in agricultural and range lands. A combination of nonpoint source management measures, voluntary implementation of advanced treatment by wastewater plants where possible, and installation of aerators in the zone of impairment were demonstrated to be effective measures for restoring the recreation and aquatic life uses of the Arroyo Colorado.


Assuntos
Conservação dos Recursos Naturais , Monitoramento Ambiental/métodos , Escherichia coli/isolamento & purificação , Microbiologia da Água , Qualidade da Água , Abastecimento de Água , Sistemas de Informação Geográfica , Modelos Teóricos , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...