Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2320215121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38830103

RESUMO

The Kuiper Belt object (KBO) Arrokoth, the farthest object in the Solar System ever visited by a spacecraft, possesses a distinctive reddish surface and is characterized by pronounced spectroscopic features associated with methanol. However, the fundamental processes by which methanol ices are converted into reddish, complex organic molecules on Arrokoth's surface have remained elusive. Here, we combine laboratory simulation experiments with a spectroscopic characterization of methanol ices exposed to proxies of galactic cosmic rays (GCRs). Our findings reveal that the surface exposure of methanol ices at 40 K can replicate the color slopes of Arrokoth. Sugars and their derivatives (acids, alcohols) with up to six carbon atoms, including glucose and ribose-fundamental building block of RNA-were ubiquitously identified. In addition, polycyclic aromatic hydrocarbons (PAHs) with up to six ring units (13C22H12) were also observed. These sugars and their derivatives along with PAHs connected by unsaturated linkers represent key molecules rationalizing the reddish appearance of Arrokoth. The formation of abundant sugar-related molecules dubs Arrokoth as a sugar world and provides a plausible abiotic preparation route for a key class of biorelevant molecules on the surface of KBOs prior to their delivery to prebiotic Earth.

2.
Nat Commun ; 15(1): 4409, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782930

RESUMO

For the last century, the source of sulfur in Earth's very first organisms has remained a fundamental, unsolved enigma. While sulfates and their organic derivatives with sulfur in the S(+VI) oxidation state represent core nutrients in contemporary biochemistry, the limited bioavailability of sulfates during Earth's early Archean period proposed that more soluble S(+IV) compounds served as the initial source of sulfur for the first terrestrial microorganisms. Here, we reveal via laboratory simulation experiments that the three simplest alkylsulfonic acids-water soluble organic S(+IV) compounds-can be efficiently produced in interstellar, sulfur-doped ices through interaction with galactic cosmic rays. This discovery opens a previously elusive path into the synthesis of vital astrobiological significance and untangles fundamental mechanisms of a facile preparation of sulfur-containing, biorelevant organics in extraterrestrial ices; these molecules can be eventually incorporated into comets and asteroids before their delivery and detection on Earth such as in the Murchison, Tagish Lake, and Allende meteorites along with the carbonaceous asteroid Ryugu.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...