Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biotechnol ; 23(1): 52, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066557

RESUMO

BACKGROUND: In this study, we designed a novel genetic circuit sensitive to Cd2+, Zn2+ and Pb2+ by mimicking the CadA/CadR operon system mediated heavy metal homeostasis mechanism of Pseudomonas aeruginosa. The regular DNA motifs on natural operon were reconfigured and coupled with the enhanced Green Fluorescent Protein (eGFP) reporter to develop a novel basic NOT type logic gate CadA/CadR-eGFP to respond metal ions mentioned above. A Genetically Engineered Microbial (GEM)-based biosensor (E.coli-BL21:pJET1.2-CadA/CadR-eGFP) was developed by cloning the chemically synthesised CadA/CadR-eGFP gene circuit into pJET1.2-plasmid and transforming into Escherichia coli (E. coli)-BL21 bacterial cells. RESULTS: The GEM-based biosensor cells indicated the reporter gene expression in the presence of Cd2+, Zn2+ and Pb2+ either singly or in combination. Further, the same biosensor cells calibrated for fluorescent intensity against heavy metal concentration generated linear graphs for Cd2+, Zn2+ and Pb2+ with the R2 values of 0.9809, 0.9761 and 0.9758, respectively as compared to non-specific metals, Fe3+ (0.0373), AsO43- (0.3825) and Ni2+ (0.8498) making our biosensor suitable for the detection of low concentration of the former metal ions in the range of 1-6 ppb. Furthermore, the GEM based biosensor cells were growing naturally within the concentration range of heavy metals, at 37 °C and optimum pH = 7.0 in the medium, resembling the characteristics of wildtype E.coli. CONCLUSION: Finally, the novel GEM based biosensor cells developed in this study can be applied for detection of targeted heavy metals in low concentration ranges (1-6 ppb) at normal bacterial physiological conditions.


Assuntos
Técnicas Biossensoriais , Metais Pesados , Cádmio/metabolismo , Chumbo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Calibragem , Metais Pesados/metabolismo , Zinco , Íons/metabolismo
2.
R Soc Open Sci ; 7(9): 201266, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33047067

RESUMO

This study involves the generation of gold nanoparticles (Au NPs) via a novel natural/non-toxic methodology using tea and orange-peel extracts. These were then embedded into a novel blend composed of a polyethylene oxide and gelatin (PEO-Gel) fibre mat. The scanning electron microscopy results indicated that the addition of both collagen (COL) and ascorbic acid (AA) into the PEO-Gel system (PEO-Gel-AA-COL system) enhances the Au NP incorporation into nanofibres leading to a diameter of 164.60 ± 20.95 and 192.43 ± 39.14 nm in contrast to the spraying observed with the Au PEO-Gel system alone. Releasing studies conducted over 30 min indicated that the PEO-Gel-AA-COL-orange peel Au (OpAu) system accounts for a higher content of Au release than the green tea Au (GtAu) NP system where a maximum release could be attained within 10-30 min depending on the amount of Au NPs that have been incorporated. Moreover, the transdermal diffusion studies conducted using Strat membrane indicated that Au NPs from both formulations (PEO-Gel-AA-COL-GtAu nanofibre, PEO-Gel-AA-COL-OpAu nanofibre) have diffused through the stratum corneum and trapped in the dermis and epidermis indicating its transdermal deliverability. Additionally, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed that nanofibres have similar radical scavenging activity like AA standard. Toxicity evaluation on a zebra fish embryo model confirmed that both GtAu NPs and OpAu NPs do not induce any teratogenic activity and are safe to be used in the range of 1.0-167 µg ml-1.

3.
J Helminthol ; 93(1): 12-20, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29183411

RESUMO

The transmembrane protein, ARV1, plays a key role in intracellular sterol homeostasis by controlling sterol distribution and cellular uptake. To date, only the ARV1s from yeast and humans have been characterized to some extent. In this study, the ARV1 of an animal filarial parasite, Setaria digitata (SdARV1), was characterized; its cDNA was 761 bp and encoded a protein of 217 amino acids, with a predicted molecular weight of 25 kDa, containing a highly conserved ARV1 homology domain and three transmembrane domains in the bioinformatic analyses. Information required to cluster members belonging to a particular taxon has been revealed in phylogenetic analyses of ARV1 sequences derived from different organisms. Reverse transcription-polymerase chain reaction (RT-PCR) analyses indicated that SdARV1 was expressed in different developmental stages - microfilariae and adult male and female worms. Experiments carried out with a single copy of the SdARV1 under the control of the PMA-1 promoter in a temperature-sensitive Saccharomyces cerevisiae mutant strain indicated full complementation of the mutant phenotype, with growth at a non-permissive temperature (37°C). Microscopic observations of cellular morphology with Gram staining revealed alteration of the shape from shrunken to oval, in mutant and complemented strains, respectively. Assessment of free sterol levels extracted from mutant yeast and complemented strains indicated that the level of sterol was significantly higher in the former compared to the latter, which had sterol levels similar to those of the wild type. Thus, the results of the current study suggest that SdARV1 is ubiquitously expressed in different developmental stages of S. digitata, and that it is a true functional homologue of mammalian and yeast ARV1s, which have crucial phylogenetic information that follows classical evolutionary trends. Finally, this is the first study to report the biological function of nematode ARV1.


Assuntos
Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Saccharomyces cerevisiae/genética , Setaria (Nematoide)/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Expressão Gênica , Teste de Complementação Genética , Proteínas de Helminto/química , Masculino , Proteínas de Membrana/química , Peso Molecular , Mutação , Filogenia , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Setaria (Nematoide)/química , Setaria (Nematoide)/crescimento & desenvolvimento , Esteróis/metabolismo
4.
Fish Shellfish Immunol ; 69: 173-184, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28823981

RESUMO

Tetraspanins are a superfamily of transmembrane proteins involved in a diverse range of physiological processes including differentiation, adhesion, signal transduction, cell motility, and immune responses. In the present study, two tetraspanins, CD63 and tetraspanin 33 (TSPAN33) from disk abalone (AbCD63 and AbTSPAN33), were identified and characterized at the molecular level. The coding sequences for AbCD63 and AbTSPAN33 encoded polypeptides of 234 and 290 amino acids (aa) with predicted molecular mass of 25.3 and 32.5 kDa, respectively. The deduced AbCD63 and AbTSPAN33 protein sequences were also predicted to have a typical tetraspanin domain architecture, including four transmembrane domains (TM), short N- and C- terminal regions, a short intracellular loop, as well as a large and small extracellular loop. A characteristic CCG motif and cysteine residues, which are highly conserved across CD63 and TSPAN33 proteins of different species, were present in the large extracellular loop of both abalone tetraspanins. Phylogenetic analysis revealed that the AbCD63 and AbTSPAN33 clustered in the invertebrate subclade of tetraspanins, thus exhibiting a close relationship with tetraspanins of other mollusks. The AbCD63 and AbTSPAN33 mRNA transcripts were detected at early embryonic development stages of disk abalone with significantly higher amounts at the trochophore stage, suggesting the involvement of these proteins in embryonic development. Both AbCD63 and AbTSPAN33 were ubiquitously expressed in all the tissues of unchallenged abalones analyzed, with the highest expression levels found in hemocytes. Moreover, significant induction of AbCD63 and AbTSPAN33 mRNA expression was observed in immunologically important tissues, such as hemocytes and gills, upon stimulation with live bacteria (Vibrio parahaemolyticus and Listeria monocytogenes), virus (viral hemorrhagic septicemia virus), and two potent immune stimulators [polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS)]. Collectively, these findings suggest that AbCD63 and AbTSPAN33 are involved in innate immune responses in disk abalone during pathogenic stress.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Brânquias/imunologia , Hemócitos/imunologia , Imunidade Inata , Tetraspanina 30/imunologia , Tetraspaninas/genética , Tetraspaninas/imunologia , Sequência de Aminoácidos , Animais , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/fisiologia , Novirhabdovirus/fisiologia , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência , Tetraspanina 30/química , Tetraspanina 30/genética , Tetraspaninas/química , Vibrio parahaemolyticus/fisiologia
5.
Fish Shellfish Immunol ; 60: 355-367, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27919756

RESUMO

Glutathione reductase (GSR) is an enzyme that catalyzes the biochemical conversion of oxidized glutathione (GSSG) into the reduced form (GSH). Since the ratio between the two forms of glutathione (GSH/GSSG) is important for the optimal function of GSH to act as an antioxidant against H2O2, the contribution of GSR as an enzymatic regulatory agent to maintain the proper ratio is essential. Abalones are marine mollusks that frequently encounter environmental factors that can trigger the overproduction of reactive oxygen species (ROS) such as H2O2. Therefore, we conducted the current study to reveal the molecular and functional properties of a GSR homolog in the disk abalone, Haliotis discus discus. The identified cDNA sequence (2325 bp) has a 1356 bp long open reading frame (ORF), coding for a 909 bp long amino acid sequence, which harbors a pyridine nucleotide-disulfide oxidoreductase domain (171-246 aa), a pyridine nucleotide-disulfide oxidoreductase dimerization domain, and a NAD(P)(+)-binding Rossmann fold superfamily signature domain. Four functional residues: the FAD binding site, glutathione binding site, NADPH binding motif, and assembly domain were identified to be conserved among the other species. The recombinant abalone GSR (rAbGSR) exhibited detectable activity in a standard glutathione reductase activity assay. The optimum pH and optimal temperature for the reaction were found to be 7.0 and 50 °C, respectively, while the ionic strength of the medium had no effect. The enzymatic reaction was vastly inhibited by Cu+2 and Cd+2 ions. A considerable effect of cellular protection was detected with a disk diffusion assay conducted with rAbGSR. Moreover, an MTT assay and flow cytometry confirmed the significance of the protective role of rAbGSR in cell function. Furthermore, AbGSR was found to be ubiquitously distributed in different types of abalone tissues. AbGSR mRNA expression was significantly upregulated in response to three immune challenges: Vibrio parahaemolyticus, Listeria monocytogenes, and lipopolysaccharide (LPS), thus indicating its possible involvement in host defense mechanisms during pathogenic infections. Taken together, the results of the current study suggest that AbGSR plays an important role in antioxidant-mediated host defense mechanisms and also provide insights into the immunological contribution of AbGSR.


Assuntos
Gastrópodes/genética , Gastrópodes/imunologia , Glutationa Redutase/genética , Imunidade Inata , Sequência de Aminoácidos , Animais , Antioxidantes/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , Feminino , Gastrópodes/efeitos dos fármacos , Gastrópodes/microbiologia , Glutationa Redutase/química , Glutationa Redutase/metabolismo , Lipopolissacarídeos/farmacologia , Listeria monocytogenes/fisiologia , Masculino , Metais Pesados/toxicidade , Estresse Oxidativo , Filogenia , Conformação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência/veterinária , Vibrio parahaemolyticus/fisiologia , Poluentes Químicos da Água/toxicidade
6.
Fish Shellfish Immunol ; 51: 291-302, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26911410

RESUMO

Peroxiredoxins (Prdx) are thiol specific antioxidant enzymes that play a pivotal role in cellular oxidative stress by reducing toxic peroxide compounds into nontoxic products. In this study, we identified and characterized a peroxiredoxin 6 counterpart from Japanese eel (Anguilla japonica) (AjPrdx6) at molecular, transcriptional and protein level. The identified full-length coding sequence of AjPrdx6 (669 bp) coded for a polypeptide of 223 aa residues (24.9 kDa). Deduced protein of AjPrdx6 showed analogy to characteristic structural features of 1-cysteine peroxiredoxin sub-family. According to the topology of the generated phylogenetic reconstruction AjPrdx6 showed closest evolutionary relationship with Salmo salar. As detected by Quantitative real time PCR (qPCR), AjPrdx6 mRNA was constitutively expressed in all the tissues examined. Upon the immune challenges with Edwardsiella tarda, lipopolysaccharides and polyinosinic:polycytidylic acid, expression of AjPrdx6 mRNA transcripts were significantly induced. The general functional properties of Prdx6 were confirmed using purified recombinant AjPrdx6 protein by deciphering its potent protective effects on cultured vero cells (kidney epithelial cell from an African green monkey) against H2O2-induced oxidative stress and protection against oxidative DNA damage elicited by mixed function oxidative (MFO) system. Altogether, our findings suggest that AjPrdx6 is a potent antioxidant protein in Japanese eels and its putative immune relevancy in pathogen stress mounted by live-bacteria or pathogen associated molecular patterns (PAMPs).


Assuntos
Anguilla/imunologia , Infecções por Enterobacteriaceae/imunologia , Doenças dos Peixes/imunologia , Proteínas de Peixes/imunologia , Peroxirredoxina VI/imunologia , Sequência de Aminoácidos , Anguilla/genética , Animais , Antioxidantes/farmacologia , Sequência de Bases , Chlorocebus aethiops , DNA Complementar/genética , Edwardsiella tarda , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes/genética , Peróxido de Hidrogênio/farmacologia , Lipopolissacarídeos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Peroxirredoxina VI/genética , Filogenia , Poli I-C/farmacologia , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Alinhamento de Sequência , Células Vero
7.
Gene ; 575(2 Pt 3): 732-42, 2016 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-26449313

RESUMO

Interleukin 1ß (IL-1ß) and interleukin 8 (IL-8) are two major pro-inflammatory cytokines which play a central role in initiation of inflammatory responses against bacterial- and viral-infections. IL-1ß is a member of the interleukin 1 family proteins and IL-8 is classified as a CXC-chemokine. In the current study, putative IL-1ß and IL-8 counterparts were identified from a black rockfish transcriptomic database and designated as RfIL-1ß and RfIL-8. The RfIL-1ß cDNA sequence consists of 1140 nucleotides with a 759bp open reading frame (ORF) which encodes a 252 amino acid (aa) protein, whereas the RfIL-8 cDNA sequence (898bp) harbors a 300bp ORF encoding a 99 aa protein. Furthermore, the RfIL-1ß aa sequence contains an IL-1 super family-like domain and an N-terminal IL-1 super family propeptide, while the amino acid sequence of RfIL-8 consists of a typical chemokine-CXC domain. Analysis of sequenced BAC clones containing RfIL-1ß and RfIL-8 showed each gene to contain 4 exons interrupted by 3 introns. Pairwise comparison and phylogeny analysis of these cytokine sequences clearly revealed their closer relationship with other corresponding members of teleosts compared to birds and mammals. Constitutive differences in RfIL-1ß and RfIL-8 mRNA expression were detected in a tissue-specific manner with the highest expression of each mRNA in spleen tissue. Two immune challenge experiments were conducted with Streptococcus iniae and polyinosinic:polycytidylic acid (poly I:C; a viral double stranded RNA mimic), and transcripts were quantified in spleen and peripheral blood cells. Significantly increased RfIL-1ß and RfIL8 transcript levels were detected with almost similar profile patterns, further suggesting a putative involvement of these pro-inflammatory cytokines in the rockfish immunity.


Assuntos
Proteínas de Peixes/genética , Interleucina-1beta/genética , Interleucina-8/genética , Perciformes/metabolismo , Animais , Clonagem Molecular/métodos , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Perfilação da Expressão Gênica/métodos , Interleucina-1beta/química , Interleucina-1beta/metabolismo , Interleucina-8/química , Interleucina-8/metabolismo , Modelos Moleculares , Especificidade de Órgãos , Perciformes/genética , Filogenia , Baço/metabolismo
8.
Fish Shellfish Immunol ; 46(2): 656-68, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26241508

RESUMO

The complement components C1r and C1s play a crucial role in innate immunity via activation of the classical complement cascade system. As initiators of the pathogen-induced signaling cascade, C1r and C1s modulate innate immunity. In order to understand the immune responses of teleost C1r and C1s, Oplegnathus fasciatus C1r and C1s genes (OfC1r and OfC1s) were identified and characterized. The genomic sequence of OfC1r was enclosed with thirteen exons that represented a putative peptide with 704 amino acids (aa), whereas eleven exons of OfC1s represented a 691 aa polypeptide. In addition, genomic analysis revealed that both OfC1r and OfC1s were located on a single chromosome. These putative polypeptides were composed of two CUB domains, an EGF domain, two CCP domains, and a catalytically active serine protease domain. Phylogenetic analysis of C1r and C1s showed that OfC1r and OfC1s were evolutionary close to the orthologs of Pundamilia nyererei (identity = 73.4%) and Oryzias latipes (identity = 58.0%), respectively. Based on the results of quantitative real-time qPCR analysis, OfC1r and OfC1s transcripts were detected in all the eleven different tissues, with higher levels of OfC1r in blood and OfC1s in liver. The putative roles of OfC1r and OfC1s in response to pathogenic bacteria (Edwardsiella tarda and Streptococcus iniae) and virus (rock bream iridovirus, RBIV) were investigated in liver and head kidney tissues. The transcription of OfC1r and OfC1s was found to be significantly upregulated in response to pathogenic bacterial and viral infections. Overall findings of the present study demonstrate the potential immune responses of OfC1r and OfC1s against invading microbial pathogens and the activation of classical signaling cascade in rock bream.


Assuntos
Complemento C1r/genética , Complemento C1s/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Imunidade Inata , Perciformes , Sequência de Aminoácidos , Animais , Complemento C1r/química , Complemento C1r/metabolismo , Complemento C1s/química , Complemento C1s/metabolismo , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/virologia , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Rim Cefálico/virologia , Iridoviridae/fisiologia , Fígado/virologia , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus/fisiologia
9.
Dev Comp Immunol ; 53(1): 222-33, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26191782

RESUMO

The basic function of transferrin is to bind iron (III) ions in the medium and to deliver them to the locations where they are required for metabolic processes. It also takes part in the host immune defense mainly via its ability to bind to iron (III) ions. Hence, transferrin is also identified as an important acute-phase protein in host immunity. Abalones are major shellfish aquaculture crops that are susceptible to a range of marine microbial infections. Since transferrin is known to be a major player in innate immunity, in the present study we sought to identify, and molecularly and functionally characterize a transferrin-like gene from disk abalone (Haliotis discus discus) named as AbTrf. AbTrf consisted of a 2187-bp open reading frame (ORF) which encodes a 728 amino acid (aa) protein. The putative amino acid sequence of AbTrf harbored N- and C-terminal transferrin-like domains, active sites for iron binding, and conserved cysteine residues. A constitutive tissue specific AbTrf expression pattern was detected by qPCR in abalones where mantle and muscle showed high AbTrf expression levels. Three immune challenge experiments were conducted using Vibrio parahaemolyticus, Listeria monocytogenes and LPS as stimuli and, subsequently, AbTrf mRNA expression levels were quantified in gill and hemocytes in a time-course manner. The mRNA expression was greatly induced in both tissues in response to both challenges. Evidencing the functional property of transferrins, recombinant AbTrf N-terminal domain (AbTrf-N) showed dose-dependent iron (III) binding activity detected by chrome azurol S (CAS) assay system. Moreover, recombinant AbTrf-N could significantly inhibit the growth of iron-dependent bacterium, Escherichia coli in a dose-dependent manner. However, AbTrf-N was unable to show any detectable bacteriostatic activity against iron-independent bacterium Lactobacillus plantarum (L. plantarum) even at its highest concentration. Collectively, our results suggest that AbTrf might play a significant role in the host innate immunity, possibly by withholding iron from pathogens.


Assuntos
Gastrópodes/imunologia , Imunidade Inata/imunologia , Ferro/metabolismo , Transferrina/genética , Transferrina/imunologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Escherichia coli/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Brânquias/imunologia , Hemócitos/imunologia , Lactobacillus plantarum/crescimento & desenvolvimento , Lipopolissacarídeos/imunologia , Listeria monocytogenes/imunologia , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA Mensageiro/biossíntese , Análise de Sequência de DNA , Transferrina/análogos & derivados , Vibrio parahaemolyticus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...