Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Proteomics ; 274: 104807, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587730

RESUMO

Histone deacetylase 1 (HDAC1) plays a key role in diverse cellular processes. With the aberrant expression of HDAC1 linked to many diseases, including cancers, HDAC inhibitors have been used successfully as therapeutics. HDAC1 has been predominantly associated with histone deacetylation and gene expression. Recently, non-histone substrates have revealed diverse roles of HDAC1 beyond epigenetics. To augment discovery of non-histone substrates, we introduced "substrate trapping" to enrich HDAC1 substrates using an inactive mutant. Herein, we performed a series of proteomics studies to test the robustness of HDAC1 substrate trapping. Based on our recent results documenting that different HDAC1 mutants preferentially bound different substrates, which suggested that multiple mutants could be used for efficient trapping, trapping with three single point mutants simultaneously identified several potential substrates uniquely compared to a single mutant alone. However, a greater number of biologically interesting hits were observed using only a single mutant, which suggests that the C151A HDAC1 mutant is the optimal trap. Importantly, comparing independent trials with a single mutant performed by different experimentalists and HEK293 cell populations, trapping was robust and reproducible. Based on the reproducible trapping data, carnosine N-methyltransferase 1 (CARNMT1) was validated as an HDAC1 substrate. The data document that mutant trapping is an effective method for discovery of unanticipated HDAC substrates. SIGNIFICANCE: Histone deacetylase (HDAC) proteins are well established epigenetic transcriptional regulators that deacetylate histone substrates to control gene expression. More recently, deacetylation of non-histone substrates has linked HDAC activity to functions outside of epigenetics. Given the use of HDAC inhibitor drugs as anti-cancer therapeutics, understanding the full functions of HDAC proteins in cell biology is essential to future drug design. To discover unanticipated non-histone substrates and further characterize HDAC functions, inactive mutants have been used to "trap" putative substrates, which were identified with mass spectrometry-based proteomics analysis. Here multiple trapping studies were performed to test the robustness of using inactive mutants and proteomics for HDAC substrate discovery. The data confirm the value of trapping mutants as effective tools to discover HDAC substrates and link HDAC activity to unexpected biological functions.


Assuntos
Histona Desacetilase 1 , Proteômica , Humanos , Células HEK293 , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Proteômica/métodos , Especificidade por Substrato
2.
Mol Omics ; 17(4): 544-553, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33885658

RESUMO

Histone deacetylase (HDAC) proteins, which regulate the acetylation state of proteins, are the targets of multiple clinical drugs for cancer treatment. Due to the heterogeneity of tumors, HDAC proteins play different roles in the progression of various cancer types. For example, MDA-MB-468 and MDA-MB-231 cells are both triple negative breast cancer cells but belong to different subtypes that display different response to HDAC inhibitor drugs. To investigate the role of HDAC proteins in breast cancer, the substrate and associated proteins of HDAC1 in MDA-MB-231, MDA-MB-468, and a normal breast epithelial cell line, MCF10A, were analyzed using substrate trapping mutants and proteomics-based mass spectrometry. All three cell lines demonstrated nonoverlapping substrate protein profiles. While both normal MCF10A and cancerous MDA-MB-468 cell lines contained similar HDAC1 associated proteins, including proteins associated with epigenetic and RNA processing mechanisms, the HDAC1 associated protein profile of MDA-MB-231 cells was devoid of expected epigenetic proteins. The variable associated protein profiles of MDA-MB-231 and MDA-MB-468 suggest that HDAC1 plays distinct roles in breast cancer cell biology, which might affect cancer aggressiveness and HDAC inhibitor sensitivity.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias de Mama Triplo Negativas , Acetilação , Linhagem Celular Tumoral , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Humanos , Proteômica , Neoplasias de Mama Triplo Negativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...