Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 47(3): e13900, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38058214

RESUMO

Chinook salmon (Oncorhynchus tshawytscha) farmed in New Zealand are known to develop abnormal spinal curvature late in seawater production. Its cause is presently unknown, but there is evidence to suggest a neuromuscular pathology. Using magnetic resonance imaging (MRI), we evaluated the relationship between soft tissue pathology and spinal curvature in farmed Chinook salmon. Regions of interest (ROIs) presenting as pathologic MRI signal hyper-intensity were identified from scans of 24 harvest-sized individuals: 13 with radiographically-detectable spinal curvature and 11 without. ROIs were excised from individuals using anatomical landmarks as reference points and histologically analysed. Pathologic MRI signal was observed more frequently in individuals with radiographic curvature (92%, n = 12) than those without (18%, n = 2), was localized to the peri-vertebral connective tissues and musculature, and presented as three forms: inflammation, fibrosis, or both. These pathologies are consistent with a chronic inflammatory process, such as that observed during recovery from a soft tissue injury, and suggest spinal curvature in farmed Chinook salmon may be associated with damage to and/or compromised integrity of the peri-vertebral soft tissues. Future research to ascertain the contributing factors is required.


Assuntos
Doenças dos Peixes , Curvaturas da Coluna Vertebral , Humanos , Animais , Salmão , Doenças dos Peixes/diagnóstico por imagem , Doenças dos Peixes/patologia , Coluna Vertebral , Inflamação/diagnóstico por imagem , Inflamação/veterinária
2.
Front Physiol ; 14: 1215442, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528894

RESUMO

Marine organisms are under threat from a simultaneous combination of climate change stressors, including warming sea surface temperatures (SST), marine heatwave (MHW) episodes, and hypoxic events. This study sought to investigate the impacts of these stressors on the Australasian snapper (C. auratus) - a finfish species of high commercial and recreational importance, from the largest snapper fishery in Aotearoa New Zealand (SNA1). A MHW scenario was simulated from 21°C (current February SST average for north-eastern New Zealand) to a future predicted level of 25°C, with the whole-animal and mitochondrial metabolic performance of snapper in response to hypoxia and elevated temperature tested after 1-, 10-, and 30-days of thermal challenge. It was hypothesised that key indicators of snapper metabolic performance would decline after 1-day of MHW stress, but that partial recovery might arise as result of thermal plasticity after chronic (e.g., 30-day) exposures. In contrast to this hypothesis, snapper performance remained high throughout the MHW: 1) Aerobic metabolic scope increased after 1-day of 25°C exposure and remained high. 2) Hypoxia tolerance, measured as the critical O2 pressure and O2 pressure where loss of equilibrium occurred, declined after 1-day of warm-acclimation, but recovered quickly with no observable difference from the 21°C control following 30-days at 25°C. 3) The performance of snapper mitochondria was also maintained, with oxidative phosphorylation respiration and proton leak flux across the inner mitochondrial membrane of the heart remaining mostly unaffected. Collectively, the results suggest that heart mitochondria displayed resilience, or plasticity, in snapper chronically exposed to 25°C. Therefore, contrary to the notion of climate change having adverse metabolic effects, future temperatures approaching 25°C may be tolerated by C. auratus in Northern New Zealand. Even in conjunction with supplementary hypoxia, 25°C appears to represent a metabolically optimal temperature for this species.

3.
J Comp Physiol B ; 193(4): 413-424, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37145369

RESUMO

While oxygen is essential for oxidative phosphorylation, O2 can form reactive species (ROS) when interacting with electrons of mitochondrial electron transport system. ROS is dependent on O2 pressure (PO2) and has traditionally been assessed in O2 saturated media, PO2 at which mitochondria do not typically function in vivo. Mitochondrial ROS can be significantly elevated by the respiratory complex II substrate succinate, which can accumulate within hypoxic tissues, and this is exacerbated further with reoxygenation. Intertidal species are repetitively exposed to extreme O2 fluctuations, and have likely evolved strategies to avoid excess ROS production. We evaluated mitochondrial electron leakage and ROS production in permeabilized brain of intertidal and subtidal triplefin fish species from hyperoxia to anoxia, and assessed the effect of anoxia reoxygenation and the influence of increasing succinate concentrations. At typical intracellular PO2, net ROS production was similar among all species; however at elevated PO2, brain tissues of the intertidal triplefin fish released less ROS than subtidal species. In addition, following in vitro anoxia reoxygenation, electron transfer mediated by succinate titration was better directed to respiration, and not to ROS production for intertidal species. Overall, these data indicate that intertidal triplefin fish species better manage electrons within the ETS, from hypoxic-hyperoxic transitions.


Assuntos
Elétrons , Mitocôndrias , Animais , Espécies Reativas de Oxigênio/metabolismo , Transporte de Elétrons , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Peixes , Hipóxia/metabolismo , Encéfalo , Succinatos/metabolismo , Succinatos/farmacologia
4.
J Fish Biol ; 102(3): 605-618, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36562750

RESUMO

Improving the feed conversion ratio (FCR; the amount of feed consumed relative to the amount of weight gain) can reduce both production costs and environmental impacts of farmed fish. The aim of this study was to investigate what drives FCR to understand how nutrients are retained, as well as the amount of oxygen consumed for digestion, absorption and assimilation (a metabolic process known as specific dynamic action, SDA). Feed-efficient and inefficient Chinook salmon (Oncorhynchus tshawytscha) in fresh water were identified using ballotini beads and X-radiography that tracked individual feed intake across three assessment periods under satiated feeding. This allowed a comparison of physiological traits and body composition between the two FCR phenotypes over two time points as Chinook salmon grew from 305 to 620 g. Fish with higher daily feed intake (DFI) had higher daily weight gain (DWG) as expected. Nonetheless, the relationship between FCR and DFI as well as FCR and DWG was variable between time points. FCR and DWG were not correlated at the first time point and were negatively correlated at the second time point. In contrast, FCR and DFI were positively correlated at the first time point but not the second. Despite this, efficient fish ate smaller meals and retained more protein, lipid and energy in their body tissues. There was no detectable difference in metabolism between the two FCR phenotypes with respect to minimal resting metabolic rate, maximum metabolic rate, aerobic scope, or SDA parameters. In conclusion, FCR is not consistently associated with growth and metabolic differences in freshwater Chinook salmon, but FCR-efficient fish retain more nutrients and consume smaller meals.


Assuntos
Salmão , Aumento de Peso , Animais , Salmão/metabolismo , Aumento de Peso/genética , Água Doce , Meio Ambiente , Nutrientes
5.
Mar Environ Res ; 157: 104863, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32275516

RESUMO

Elevated seawater CO2 can cause a range of behavioural impairments in marine fishes. However, most studies to date have been conducted on small benthic species and very little is known about how higher oceanic CO2 levels could affect the behaviour of large pelagic species. Here, we tested the effects of elevated CO2, and where possible the interacting effects of high temperature, on a range of ecologically important behaviours (anxiety, routine activity, behavioural lateralization and visual acuity) in juvenile yellowtail kingfish, Seriola lalandi. Kingfish were reared from the egg stage to 25 days post-hatch in a full factorial design of ambient and elevated CO2 (~500 and ~1000 µatm pCO2) and temperature (21 °C and 25 °C). The effects of elevated CO2 were trait-specific with anxiety the only behaviour significantly affected. Juvenile S. lalandi reared at elevated CO2 spent more time in the dark zone during a standard black-white test, which is indicative of increased anxiety. Exposure to high temperature had no significant effect on any of the behaviours tested. Overall, our results suggest that juvenile S. lalandi are largely behaviourally tolerant to future ocean acidification and warming. Given the ecological and economic importance of large pelagic fish species more studies investigating the effect of future climate change are urgently needed.


Assuntos
Comportamento Animal , Dióxido de Carbono/química , Peixes/fisiologia , Água do Mar/química , Animais , Ansiedade , Concentração de Íons de Hidrogênio , Oceanos e Mares
6.
PLoS One ; 15(4): e0231091, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32240240

RESUMO

Acute heat shock has previously been shown to improve subsequent low O2 (hypoxia) tolerance in an intertidal fish species, a process known as cross-tolerance, but it is not known whether this is a widespread phenomenon. This study examined whether a rock pool specialist, the triplefin fish Bellapiscis medius, exhibits heat shock induced cross-tolerance to hypoxia, i.e., longer time to loss of equilibrium (LOE) and lower critical O2 saturation (Scrit) after recovering from an acute heat challenge. Non-heat shock controls had a median time to loss of equilibrium (LOE50) of 54.4 min under severe hypoxia (7% of air saturation) and a Scrit of 15.8% air saturation. Contrary to expectations, however, treatments that received an 8 or 10°C heat shock showed a significantly shorter LOE50 in hypoxia (+8°C = 41.5 min; +10°C = 28.7 min) and no significant change in Scrit (+8°C = 17.0% air saturation; +10°C = 18.3% of air saturation). Thus, there was no evidence of heat shock induced cross-tolerance to hypoxia in B. medius because exposure to acute heat shock impaired hypoxia tolerance.


Assuntos
Adaptação Fisiológica , Peixes/fisiologia , Temperatura Alta , Hipóxia/fisiopatologia , Movimentos da Água , Animais , Metabolismo Basal , Resposta ao Choque Térmico/fisiologia , Oxigênio/metabolismo , Análise de Sobrevida
7.
Front Physiol ; 10: 1378, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31780952

RESUMO

To examine how different fish coping strategies respond to salinity challenge, olive flounder (Paralichthys olivaceus) with active coping style (AC) and passive coping style (PC) were transferred from seawater (SW) to freshwater (FW) and their behavior and physiology were analyzed. Different behavioral coping strategies, in terms of escape and feeding tendencies, were confirmed in AC and PC fish without FW exposure. Differences in swimming distance between AC and PC flounder were then assessed after 1 and 2 days of FW transfer. Plasma parameters and branchial gene expression were also determined 2, 5, 8, and 14 days after transfer, with comparisons between AC and PC fish and against a SW-acclimated control group. The results showed that: (1) PC flounder exhibited a significant reduction in swimming activity, while AC flounder significantly increased locomotion 2 days after transfer. (2) The plasma osmolality and plasma ionic (Na+ and Cl-) concentration of FW-acclimated PC flounder declined in a continuous fashion over time but this contrasted against the plasma parameters of AC flounder which fluctuated below the baseline level of a SW-acclimated control group. (3) The expression of NKA-α1 and NHE-3-like mRNA in PC flounder gill increased significantly from 5 days, but the expression of these two genes in AC flounder only increased after 8 days of transfer. (4) There were no remarkable differences observed in Rhcg expressions between AC and PC flounder. This study indicates for the first time that PC flounder adopt a "freeze-passive tolerance" strategy while AC flounder adopt a "flight-active resistance" defense strategy in response to salinity challenge.

8.
J Comp Physiol B ; 189(3-4): 399-411, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30941501

RESUMO

Decreased oxygen (O2) availability (hypoxia) is common in rock pools and challenges the aerobic metabolism of fishes living in these habitats. In this study, the critical O2 tension (Pcrit), a whole animal measure of the aerobic contribution to hypoxia tolerance, was compared between four New Zealand triplefin fishes including an intertidal specialist (Bellapiscis medius), an occasional intertidal inhabitant (Forsterygion lapillum) and two exclusively subtidal species (F. varium and F. malcolmi). The intertidal species had lower Pcrit values than the subtidal species indicating traits to meet resting O2 demands at lower O2 tensions. While resting O2 demand (standard metabolic rate; SMR) did not show a major difference between species, the intertidal species had higher maximal rates of O2 consumption ([Formula: see text]) and higher aerobic metabolic scope (MS). The high O2 extractive capacity of the intertidal species was associated with increased blood O2 carrying capacity (i.e., higher Hb concentration), in addition to higher mass-specific gill surface area and thinner gill secondary lamellae that collectively conveyed a higher capacity for O2 flux across the gills. The specialist intertidal species B. medius also had higher glycogen stores in both white muscle and brain tissues, suggesting a greater potential to generate ATP anaerobically and survive in rock pools with O2 tensions less than Pcrit. Overall, this study shows that the superior Pcrit of intertidal triplefin species is not linked to a minimisation of SMR, but is instead associated with an increased O2 extractive capacity of the cardiorespiratory system (i.e., [Formula: see text], MS, Hb and gill O2 flux).


Assuntos
Metabolismo Energético , Peixes/fisiologia , Glicogênio/metabolismo , Oxigênio/sangue , Animais , Ecossistema , Oxigênio/metabolismo , Especificidade da Espécie
9.
J Exp Biol ; 221(Pt 22)2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30254026

RESUMO

Daytime low tides that lead to high-temperature events in stranded rock pools often co-occur with algae-mediated hyperoxia as a result of strong solar radiation. Recent evidence shows aerobic metabolic scope (MS) can be expanded under hyperoxia in fish but so far this possibility has not been examined in intertidal species despite being an ecologically relevant scenario. Furthermore, it is unknown whether hyperoxia increases the upper thermal tolerance limits of intertidal fish and, therefore, their ability to withstand extreme high-temperature events. Therefore, we measured the metabolic response (mass-specific rate of oxygen consumption, MO2 ) to thermal ramping (21-29°C) and the upper thermal tolerance limit (UTL) of two intertidal triplefin fishes (Bellapiscis medius and Forsterygion lapillum) under hyperoxia and normoxia. Hyperoxia increased maximal oxygen consumption (MO2,max) and MS of each species at ambient temperature (21°C) but also after thermal ramping to elevated temperatures such as those observed in rock pools (29°C). While hyperoxia did not provide a biologically meaningful increase in upper thermal tolerance of either species (>31°C under all conditions), the observed expansion of MS at 29°C under hyperoxia could potentially benefit the aerobic performance, and hence the growth and feeding potential, etc., of intertidal fish at non-critical temperatures. That hyperoxia does not increase upper thermal tolerance in a meaningful way is cause for concern as climate change is expected to drive more extreme rock pool temperatures in the future and this could present a major challenge for these species.


Assuntos
Peixes/fisiologia , Temperatura Alta , Consumo de Oxigênio , Aerobiose , Animais , Metabolismo Energético
10.
Front Physiol ; 9: 1941, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30713504

RESUMO

The vertebrate brain is generally very sensitive to acidosis, so a hypoxia-induced decrease in pH is likely to have an effect on brain mitochondria (mt). Mitochondrial respiration (JO2) is required to generate an electrical gradient (ΔΨm) and a pH gradient to power ATP synthesis, yet the impact of pH modulation on brain mt function remains largely unexplored. As intertidal fishes within rock pools routinely experience hypoxia and reoxygenation, they would most likely experience changes in cellular pH. We hence compared four New Zealand triplefin fish species ranging from intertidal hypoxia-tolerant species (HTS) to subtidal hypoxia-sensitive species (HSS). We predicted that HTS would tolerate acidosis better than HSS in terms of sustaining mt structure and function. Using respirometers coupled to fluorimeters and pH electrodes, we titrated lactic-acid to decrease the pH of the media, and simultaneously recorded JO2, ΔΨm, and H+ buffering capacities within permeabilized brain and swelling of mt isolated from non-permeabilized brains. We then measured ATP synthesis rates in the most HTS (Bellapiscus medius) and the HSS (Forsterygion varium) at pH 7.25 and 6.65. Mitochondria from HTS brain did have greater H+ buffering capacities than HSS mt (∼10 mU pH.mgprotein -1). HTS mt swelled by 40% when exposed to a decrease of 1.5 pH units, and JO2 was depressed by up to 15% in HTS. However, HTS were able to maintain ΔΨm near -120 mV. Estimates of work, in terms of charges moved across the mt inner-membrane, suggested that with acidosis, HTS mt may in part harness extra-mt H+ to maintain ΔΨm, and could therefore support ATP production. This was confirmed with elevated ATP synthesis rates and enhanced P:O ratios at pH 6.65 relative to pH 7.25. In contrast, mt volumes and ΔΨm decreased downward pH 6.9 in HSS mt and paradoxically, JO2 increased (∼25%) but ATP synthesis and P:O ratios were depressed at pH 6.65. This indicates a loss of coupling in the HSS with acidosis. Overall, the mt of these intertidal fish have adaptations that enhance ATP synthesis efficiency under acidic conditions such as those that occur in hypoxic or reoxygenated brain.

11.
J Exp Biol ; 220(Pt 19): 3527-3535, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28760830

RESUMO

Intertidal fish species face gradual chronic changes in temperature and greater extremes of acute thermal exposure through climate-induced warming. As sea temperatures rise, it has been proposed that whole-animal performance will be impaired through oxygen and capacity limited thermal tolerance [OCLTT; reduced aerobic metabolic scope (MS)] and, on acute exposure to high temperatures, thermal safety margins may be reduced because of constrained acclimation capacity of upper thermal limits. Using the New Zealand triplefin fish (Forsterygion lapillum), this study addressed how performance in terms of growth and metabolism (MS) and upper thermal tolerance limits would be affected by chronic exposure to elevated temperature. Growth was measured in fish acclimated (12 weeks) to present and predicted future temperatures and metabolic rates were then determined in fish at acclimation temperatures and with acute thermal ramping. In agreement with the OCLTT hypothesis, chronic exposure to elevated temperature significantly reduced growth performance and MS. However, despite the prospect of impaired growth performance under warmer future summertime conditions, an annual growth model revealed that elevated temperatures may only shift the timing of high growth potential and not the overall annual growth rate. While the upper thermal tolerance (i.e. critical thermal maxima) increased with exposure to warmer temperatures and was associated with depressed metabolic rates during acute thermal ramping, upper thermal tolerance did not differ between present and predicted future summertime temperatures. This suggests that warming may progressively decrease thermal safety margins for hardy generalist species and could limit the available habitat range of intertidal populations.


Assuntos
Metabolismo Basal , Temperatura Alta , Consumo de Oxigênio , Perciformes/fisiologia , Termotolerância , Animais , Nova Zelândia , Perciformes/crescimento & desenvolvimento , Distribuição Aleatória
12.
Front Physiol ; 5: 448, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520662

RESUMO

Induced-swimming can improve the growth and feed conversion efficiency of finfish aquaculture species, such as salmonids and Seriola sp., but some species, such as Atlantic cod, show no or a negative productivity response to exercise. As a possible explanation for these species-specific differences, a recent hypothesis proposed that the applicability of exercise training, as well as the exercise regime for optimal growth gain (ERopt growth), was dependent upon the size of available aerobic metabolic scope (AMS). This study aimed to test this hypothesis by measuring the growth and swimming metabolism of hapuku, Polyprion oxygeneios, to different exercise regimes and then reconciling the metabolic costs of swimming and specific dynamic action (SDA) against AMS. Two 8-week growth trials were conducted with ERs of 0.0, 0.25, 0.5, 0.75, 1, and 1.5 body lengths per second (BL s(-1)). Fish in the first trial showed a modest 4.8% increase in SGR over static controls in the region 0.5-0.75 BL s(-1) whereas the fish in trial 2 showed no significant effect of ER on growth performance. Reconciling the SDA of hapuku with the metabolic costs of swimming showed that hapuku AMS is sufficient to support growth and swimming at all ERs. The current study therefore suggests that exercise-induced growth is independent of AMS and is driven by other factors.

13.
J Exp Biol ; 216(Pt 3): 369-78, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23038727

RESUMO

It was hypothesised that chronic hypoxia acclimation (preconditioning) would alter the behavioural low-O(2) avoidance strategy of fish as a result of both aerobic and anaerobic physiological adaptations. Avoidance and physiological responses of juvenile snapper (Pagrus auratus) were therefore investigated following a 6 week period of moderate hypoxia exposure (10.2-12.1 kPa P(O(2)), 21 ± 1 °C) and compared with those of normoxic controls (P(O(2))=20-21 kPa, 21 ± 1 °C). The critical oxygen pressure (P(crit)) limit of both groups was unchanged at ~7 kPa, as were standard, routine and maximum metabolic rates. However, hypoxia-acclimated fish showed increased tolerances to hypoxia in behavioural choice chambers by avoiding lower P(O(2)) levels (3.3 ± 0.7 vs 5.3 ± 1.1 kPa) without displaying greater perturbations of lactate or glucose. This behavioural change was associated with unexpected physiological adjustments. For example, a decrease in blood O(2) carrying capacity was observed after hypoxia acclimation. Also unexpected was an increase in whole-blood P(50) following acclimation to low O(2), perhaps facilitating Hb-O(2) off-loading to tissues. In addition, cardiac mitochondria measured in situ using permeabilised fibres showed improved O(2) uptake efficiencies. The proportion of the anaerobic enzyme lactate dehydrogenase, at least relative to the aerobic marker enzyme citrate synthase, also increased in heart and skeletal red muscle, indicating enhanced anaerobic potential, or in situ lactate metabolism, in these tissues. Overall, these data suggest that a prioritization of O(2) delivery and O(2) utilisation over O(2) uptake during long-term hypoxia may convey a significant survival benefit to snapper in terms of behavioural low-O(2) tolerance.


Assuntos
Oxigênio/metabolismo , Perciformes/fisiologia , Aclimatação , Animais , Hemoglobinas/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Músculos/fisiologia , Oxigênio/sangue , Consumo de Oxigênio , Perciformes/sangue , Respiração
14.
J Exp Biol ; 215(Pt 22): 3944-54, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22899528

RESUMO

The yellowtail kingfish, Seriola lalandi, shows a distribution of anaerobic and aerobic (red and pink) muscle fibres along the trunk that is characteristic of active pelagic fishes. The athletic capacity of S. lalandi is also shown by its relative high standard metabolic rate and optimal (i.e. least cost) swimming speed. To test the hypothesis that lateral line afferent information contributes to efficient locomotion in an active pelagic species, the swimming performance of S. lalandi was evaluated after unilateral disruption of trunk superficial neuromasts (SNs). Unilaterally disrupting the SNs of the lateral line impaired both swimming performance and energetic efficiency. The critical swimming speed (U(crit); mean ± s.d., N=12) for unilaterally SN-disrupted fish was 2.11±0.96 fork lengths (FL) s(-1), which was significantly slower than the 3.66±0.19 FL s(-1) U(crit) of sham SN-disrupted fish. The oxygen consumption rate (mg O(2) kg(-1) min(-1)) of the unilaterally SN-disrupted fish in a speed range of 1.0-2.2 FL s(-1) was significantly greater than that of the sham SN-disrupted fish. The least gross cost of transport (GCOT; N=6) for SN-disrupted fish was 0.18±0.06 J N(-1) m(-1), which was significantly greater than the 0.11±0.03 J N(-1) m(-1) GCOT for sham SN-disrupted fish. The factorial metabolic scope (N=6) of the unilaterally SN-disrupted fish (2.87±0.78) was significantly less than that of sham controls (4.14±0.37). These data show that an intact lateral line is important to the swimming performance and efficiency of carangiform swimmers, but the functional mechanism of this effect remains to be determined.


Assuntos
Metabolismo Energético/fisiologia , Hidrodinâmica , Perciformes/fisiologia , Sensação/fisiologia , Natação/fisiologia , Movimentos da Água , Animais , Glicólise , Fibras Musculares Esqueléticas/fisiologia , Oxirredução , Consumo de Oxigênio/fisiologia , Respiração
15.
Artigo em Inglês | MEDLINE | ID: mdl-22507523

RESUMO

It is already known that the New Zealand snapper (Pagrus auratus, Sparidae) does not avoid hypoxia until reaching an oxygen partial pressure (PO(2)) of 3.1±1.2 kPa at 18 °C. Avoidance at this level of PO(2) and temperature is below the critical oxygen partial pressure of the species (P(crit)=5.8±0.6 kPa, 43.5±4.5 mmHg) and is therefore expected to result in major physiological stress. Results from the current study showed that avoidance was associated with numerous physiological perturbations, including a significant endocrine response, haematological changes, osmoregulatory disturbance and metabolic adjustments in the heart, liver and muscle. Snapper clearly experienced physiological stress at the point of avoidance but they were not however in a state of physiological exhaustion since some fuel reserves were still available. In addition to avoidance, snapper also showed a subtle reduction in swimming speed - this energy-saving response may have helped snapper minimise the physiological challenge of low O(2) residence. It is therefore concluded that snapper can reside in water below their P(crit) threshold for brief periods of time and, without any evidence of physiological exhaustion at the point of avoidance, fish should recover quickly once normoxia is selected. Lastly, with signs of anaerobic metabolism in cardiac tissue at the point of avoidance, we tentatively suggest that snapper may leave hypoxia to protect heart function.


Assuntos
Comportamento Animal , Hipóxia , Perciformes/fisiologia , Animais , Metabolismo Basal , Glicemia , Glicogênio/metabolismo , Hematócrito , Hidrocortisona/sangue , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Miocárdio/metabolismo , Consumo de Oxigênio , Perciformes/metabolismo , Natação
16.
J Exp Biol ; 214(Pt 17): 2927-34, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21832136

RESUMO

The effect of altered oxygen transport potential on behavioural responses to environmental hypoxia was tested experimentally in snapper, Pagrus auratus, treated with a haemolytic agent (phenylhydrazine) or a sham protocol. Standard metabolic rate was not different between anaemic and normocythaemic snapper (Hct=6.7 and 25.7 g dl(-1), respectively), whereas maximum metabolic rate, and hence aerobic scope (AS), was consistently reduced in anaemic groups at all levels of water P(O(2)) investigated (P<0.01). This reduction of AS conferred a higher critical oxygen limit (P(crit)) to anaemic fish (8.6±0.6 kPa) compared with normocythaemic fish (5.3±0.4 kPa), thus demonstrating reduced hypoxic tolerance in anaemic groups. In behavioural choice experiments, the critical avoidance P(O(2)) in anaemic fish was 6.6±2.5 kPa compared with 2.9±0.5 kPa for controls (P<0.01). Behavioural avoidance was not associated with modulation of swimming speed. Despite differences in physiological and behavioural parameters, both groups avoided low P(O(2)) just below their P(crit), indicating that avoidance was triggered consistently when AS limits were reached and anaerobic metabolism was unavoidable. This was confirmed by high levels of plasma lactate in both treatments at the point of avoidance. This is the first experimental demonstration of avoidance behaviour being modulated by internal physiological state. From an ecological perspective, fish with disturbed oxygen delivery potential arising from anaemia, pollution or stress are likely to avoid environmental hypoxia at a higher P(O(2)) than normal fish.


Assuntos
Anemia/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Perciformes/fisiologia , Anemia/induzido quimicamente , Animais , Aprendizagem da Esquiva , Comportamento Animal , Metabolismo Energético , Oxidantes , Fenil-Hidrazinas
17.
Fish Physiol Biochem ; 37(2): 327-36, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21562771

RESUMO

There is a wealth of evidence showing that a moderate level of non-stop exercise improves the growth and feed conversion of many active fishes. A diverse number of active fish are currently being farmed, and an optimal level of exercise may feasibly improve the production efficiency of these species in intensive culture systems. Our experiments have set out to resolve the growth benefits of juvenile New Zealand yellowtail kingfish (Seriola lalandi) enforced to swim in currents at various speeds over two temperatures (14.9 and 21.1 °C). We also probed potential sources of physiological efficiency in an attempt to resolve how growth is enhanced at a time of high energetic expenditure. Results show that long-term exercise yields a 10% increase in growth but this occurs in surprisingly low flows (0.75 BL s⁻¹) and only under favourable environmental temperatures (21.1 °C). Experiments using a swim flume respirometer indicate that exercise training has no effect on metabolic scope or critical swimming speeds but it does improve swimming efficiency (lower gross costs of transport, GCOT). Such efficiency may potentially help reconcile the costs of growth and exercise within the range of available metabolic energy (scope). With growth boosted in surprisingly low flows and elevated water temperatures only, further investigations are required to understand the bioenergetics and partitioning of costs in the New Zealand yellowtail kingfish.


Assuntos
Perciformes/crescimento & desenvolvimento , Perciformes/fisiologia , Natação/fisiologia , Ração Animal , Animais , Metabolismo Energético , Pesqueiros , Nova Zelândia , Condicionamento Físico Animal/métodos , Temperatura , Fatores de Tempo
18.
Fish Physiol Biochem ; 37(2): 317-25, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21567152

RESUMO

The productivity and welfare benefits of sustained swimming in fish are well documented, but are not yet exploited in commercial aquaculture. We report here on a study designed to test the feasibility of inducing sustained exercise in Atlantic salmon (Salmo salar L.) using a novel lighting device that provides an apparently moving light pattern. It was found that such a device could induce sustained swimming in Atlantic salmon held in tanks and that a centrally placed (inner ring) light system was far more effective in this context than one in which lights were placed on the outer wall of tanks. The central configuration was associated with enhanced rates of growth, feed conversion and reduced levels of plasma cortisol. Such developments in fish swimming technologies may assist the sustainability of finfish aquaculture through promotion of sustained exercise leading to improved productivity and welfare.


Assuntos
Salmo salar/fisiologia , Natação/fisiologia , Animais , Pesqueiros/instrumentação , Iluminação/instrumentação , Modelos Biológicos , Estimulação Luminosa , Salmo salar/crescimento & desenvolvimento , Estresse Fisiológico
19.
Physiol Biochem Zool ; 79(5): 909-18, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16927237

RESUMO

The relationship between whole blood-oxygen affinity (P(50)) and pH-dependent binding (i.e., cooperativity and the Bohr [ Phi ] and Root effects) was examined statistically under standardized conditions (10.0 degrees Celsius) in four unrelated cold-temperate marine fishes that differ widely in their swimming performance and their expected responses to hypoxia: cod (Gadus morhua), herring (Clupea harengus), mackerel (Scomber scombrus), and plaice (Pleuronectes platessa). An unexpected difference in blood-oxygen affinity was found (herring>plaice>mackerel>cod), and this was independent of both swimming performance and the predicted low O(2) response of each species. The ecotype of the four marine species was also unrelated to pH-dependent binding because no difference in the Bohr effect was apparent ( Phi varied insignificantly from -0.90 to -1.06), and differences in the magnitude of the cooperative binding reaction were associated only with the presence of the Root effect. Although several reviews propose a generalized link between blood-oxygen affinity and pH-dependent binding, our results advise against overestimating the adaptive functional properties of hemoglobin across unrelated species.


Assuntos
Temperatura Baixa , Peixes/sangue , Peixes/fisiologia , Oxigênio/sangue , Oxigênio/metabolismo , Natação/fisiologia , Animais , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...