Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci Technol ; 60(10): 2581-2590, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37599844

RESUMO

Different conveyor belt materials used by the meat and other food industries were compared, regarding their cleanability as bacterial reduction rates in relation to their surface topography. Eleven thermoplastic polymers, four stainless steels, and five aluminized nanostructured surfaces were investigated under laboratory conditions. Cleanings were conducted with water only, and with an alkaline foam detergent. Overall, scanning electron microscopy revealed remarkable differences in the surface topography of the tested surfaces. Water cleaning results showed that nanostructured aluminized surfaces achieved significantly higher cleanability rates compared to the eight thermoplastic surfaces, as well as the glass-bead blasted rough stainless steel. Thermoplastic surfaces showed overall low cleanability rates when cleaned with alkaline detergent, while stainless steel and nanoporous aluminum showed high variations. Overall, nanoporous aluminum showed promising results as it can be used to coat conveyor belts. However, compatibility with cleaning detergent and sensitivity to scratches must be further investigated. Overall, it can be concluded that cleanability is not only influenced by surface roughness, but also by the overall surface finish, scratches, and defects. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05778-0.

2.
Foods ; 10(11)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829020

RESUMO

The high perishability of fresh meat results in short sales and consumption periods, which can lead to high amounts of food waste, especially when a fixed best-before date is stated. Thus, the aim of this study was the development of a real-time dynamic shelf-life criterion (DSLC) for fresh pork filets based on a multi-model approach combining predictive microbiology and sensory modeling. Therefore, 647 samples of ma-packed pork loin were investigated in isothermal and non-isothermal storage trials. For the identification of the most suitable spoilage predictors, typical meat quality parameters (pH-value, color, texture, and sensory characteristics) as well as microbial contamination (total viable count, Pseudomonas spp., lactic acid bacteria, Brochothrix thermosphacta, Enterobacteriaceae) were analyzed at specific investigation points. Dynamic modeling was conducted using a combination of the modified Gompertz model (microbial data) or a linear approach (sensory data) and the Arrhenius model. Based on these models, a four-point scale grading system for the DSLC was developed to predict the product status and shelf-life as a function of temperature data in the supply chain. The applicability of the DSLC was validated in a pilot study under real chain conditions and showed an accurate real-time prediction of the product status.

3.
Talanta ; 219: 121315, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887055

RESUMO

Surface-enhanced Raman spectroscopy (SERS) with subsequent chemometric evaluation was performed for the rapid and non-destructive differentiation of seven important meat-associated microorganisms, namely Brochothrix thermosphacta DSM 20171T, Pseudomonas fluorescens DSM 4358, Salmonella enterica subsp. enterica sv. Enteritidis DSM 14221, Listeria monocytogenes DSM 19094, Micrococcus luteus DSM 20030T, Escherichia coli HB101 and Bacillus thuringiensis sv. israelensis DSM 5724. A simple method for collecting spectra from commercial paper-based SERS substrates without any laborious pre-treatments was used. In order to prepare the spectroscopic data for classification at genera level with a subsequent chemometric evaluation consisting of principal component analysis and discriminant analysis, a data pre-processing method with spike correction and sum normalisation was performed. Because of the spike correction rather than exclusion, and therefore the use of a balanced data set, the multivariate analysis of the data is significantly resilient and meaningful. The analysis showed that the differentiation of meat-associated microorganisms and thereby the detection of important meat-related pathogenic bacteria was successful on genera level and a cross-validation as well as a classification of ungrouped data showed promising results, with 99.5% and 97.5%, respectively.


Assuntos
Carne , Análise Espectral Raman , Brochothrix , Análise Multivariada , Salmonella
4.
Poult Sci ; 96(8): 2853-2861, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419366

RESUMO

The aim of this study was to investigate the influence of different methionine sources and concentrations on the quality and spoilage process of broiler meat. The trial was comprised of 7 treatment groups: one basal group (suboptimal in Methionine+Cysteine; i.e., 0.89, 0.74, 0.69% in DM SID Met+Cys in starter, grower, and finisher diets, respectively) and 3 doses (0.10, 0.25, and 0.40%) of either DL-Methionine (DLM) or DL-2-hydroxy-4-methylthio butanoic acid (DL-HMTBA) on an equimolar basis of the DLM-supplemented groups. The broilers were fed the diets for 35 d, then slaughtered and processed. The filets were aerobically packed and stored under temperature controlled conditions at 4°C. Meat quality investigations were comprised of microbial investigations (total viable count and Pseudomonas spp.), pH and drip loss measurements of the filets. The shelf life of the meat samples was determined based on sensory parameters. After slaughtering, all supplemented meat samples showed a high quality, whereby no differences between the 2 methionine sources could be detected for the microbial load, pH, and drip loss. In comparison to the control group, the supplemented samples showed a higher sensory quality, characterized by a fresh smell and fresh red color. Methionine supplementation had a significant influence on meat quality parameters during storage. The microbial load, pH and drip loss of the chicken filets were positively correlated to the methionine concentration. Additionally, the microbial load at the end of storage was positively correlated to pH and drip loss values. Nevertheless, the microbial parameters were in a normal range and the positive correlation to methionine concentration did not affect the sensory shelf life. The mean sensory shelf life of the broiler filets varied between 7 to 9 d. During storage, no difference in the development of sensory parameters was observed between the supplemented groups, while the spoilage process of the basal group occurred slightly faster. In conclusion, methionine concentration, but not methionine source, effected meat quality parameters in breast muscles of broilers.


Assuntos
Qualidade dos Alimentos , Armazenamento de Alimentos , Carne/análise , Metionina/análogos & derivados , Metionina/metabolismo , Ração Animal/análise , Animais , Galinhas , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Metionina/administração & dosagem , Racemetionina/administração & dosagem , Racemetionina/metabolismo
5.
Poult Sci ; 94(3): 424-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25638474

RESUMO

Storage tests under different temperatures (2, 4, 10, and 15°C) were conducted to identify the best predictor variable that is most effective to explain the loss of the shelf life and quality of modified atmosphere packed (MAP) poultry, and constitutes the basis for the prediction of the remaining shelf life. The samples were packed in 70% O2 and 30% CO2, which is the common used gas atmosphere for poultry filets in Germany. Typical spoilage microorganisms (Pseudomonas spp., Brochothrix thermosphacta, Enterobacteriaceae, and Lactobacillus spp.) and total viable count (TVC) were enumerated frequently. Additionally, samples were analyzed for sensory changes, pH, and gas concentration. The data extraction and selections by stepwise regression and principle component analysis (PCA) was carried out to identify a variable which has the main influence on shelf life and freshness loss. The results accentuate that the spoilage is caused by a wide range of microorganisms. No specific microorganism could be identified as the dominant originator for the deteriorative changes. Solely TVC showed significant correlations between the development of the sensory decay and the development of the TVC for each single storage temperature.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbiologia de Alimentos , Armazenamento de Alimentos/métodos , Carne/análise , Carne/microbiologia , Animais , Bactérias/isolamento & purificação , Galinhas , Contagem de Colônia Microbiana/veterinária , Alemanha , Análise de Componente Principal , Análise de Regressão , Temperatura
6.
Poult Sci ; 92(5): 1348-56, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23571346

RESUMO

Poultry fillets were packaged under 6 different gas atmospheres (A: 15% Ar, 60% O2, 25% CO2; B: 15% N2, 60% O2, 25% CO2; C: 25% Ar, 45% O2, 30% CO2; D: 25% N2, 45% O2, 30% CO2; E: 82% Ar; 18% CO2; F: 82% N2, 18% CO2) and stored at 4°C. During storage, the growth of typical spoilage organisms (Brochothrix thermosphacta, Pseudomonas spp., Enterobacteriaceae, and Lactobacilli spp.) and total viable count were analyzed and modeled using the Gompertz function. Sensory analyses of the poultry samples were carried out by trained sensory panelists for color, odor, texture, drip loss, and general appearance. No significant difference in microbiological growth parameters was observed for fresh poultry stored under an argon-enriched atmosphere in comparison with nitrogen, except the B. thermosphacta stored under 82% argon. The sensory evaluation showed a significant effect of an argon-enriched atmosphere, particularly on color of meat stored under 15% argon (P < 0.05). In contrast, 25 and 82% argon concentrations in place of nitrogen showed no beneficial effect on sensory parameters.


Assuntos
Argônio/farmacologia , Bactérias/efeitos dos fármacos , Embalagem de Alimentos/métodos , Carne/microbiologia , Carne/normas , Nitrogênio/farmacologia , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Galinhas , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...