Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comb Chem High Throughput Screen ; 25(9): 1488-1497, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34238151

RESUMO

BACKGROUND: Streptococcus sanguinis can contribute to tooth demineralization, which can lead to dental caries. Antibiotics used indefinitely to treat dental caries can lead to bacterial resistance. Discovering new antibacterial agents from natural products, like Ocimum basilicum, will help combat antibiotic resistance. In silico analysis (molecular docking) can help determine the lead compound by studying the molecular interaction between the drug and the target receptor (MurA enzyme and DNA gyrase). It is a potential candidate for antibacterial drug development. OBJECTIVES: The research objective is to isolate the secondary metabolite of O. basilicum extract that exhibits activity against S. sanguinis through in vitro and in silico analysis. METHODS: n-Hexane extract of O. basilicum was purified by combining column chromatography with bioactivity-guided fractionation. The in vitro antibacterial activity against S. sanguinis was determined using the disc diffusion and microdilution method, while molecular docking simulation of nevadensin (1) with MurA enzyme and DNA gyrase was performed by using PyRx 0.8 program. RESULTS: Nevadensin from O. basilicum was successfully isolated and characterized by spectroscopic methods. This compound showed antibacterial activity against S. sanguinis with MIC and MBC values of 3750 and 15000 µg/mL, respectively. In silico analysis showed that the binding affinity to MurA was -8.5 Kcal/mol, and the binding affinity to DNA gyrase was -6.7 Kcal/mol. The binding of nevadensin-MurA is greater than fosfomycin-MurA. Otherwise, Nevadensin-DNA gyrase has a weaker binding affinity than fluoroquinolone-DNA gyrase and chlorhexidine-DNA gyrase. CONCLUSION: Nevadensin showed potential as a new natural antibacterial agent by inhibiting the MurA enzyme rather than DNA gyrase.


Assuntos
DNA Girase , Cárie Dentária , Antibacterianos/química , Antibacterianos/farmacologia , DNA Girase/química , DNA Girase/genética , DNA Girase/metabolismo , Flavonas , Humanos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
2.
Adv Appl Bioinform Chem ; 14: 103-115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34188494

RESUMO

BACKGROUND: Dental caries is a widespread disease that causes dental tissue destruction and leads to local and general complications. Gram-positive bacteria including Streptococcus mutans, Streptococcus sanguinis, and Enterococcus faecalis take part in dental caries formation. Gram-positive bacteria have cell walls that consistof a thick layer of peptidoglycan which maintains the strength and rigidity of the bacteria, as well as bacteria guard from internal osmotic pressure. The biosynthesis of peptidoglycan involves many enzymes, including the Mur family, penicillin binding protein (PBP), and sortases. PURPOSE: This research has the intention to screen and examine the antibacterial compound of edible plant Kemangi (Ocimum basilicum L.) in terms of how it fights against some oral pathogenic bacteria of E. faecalis ATCC 29212, S. mutans ATCC 25175, and S. sanguinis ATCC 10566. MATERIALS AND METHODS: The O. basilicum L. was macerated by several organic solvents to obtain the extracts, before then being purified using several combinations of chromatography methods and the compound was discovered via spectroscopic methods. For the assay against bacteria, the extracts and compounds were tested using agar well diffusion and microdilution assay. RESULTS: The isolated compound was identified as ß-sitosterol. The compound activity against bacteria was evaluated by in vitro assay against S. sanguinis ATCC 10566 and E. faecalis ATCC 29212 with the MIC and MBC value of 25,000 and 50,000 ppm, respectively. The compound was also tested by in silico study using the molecular docking method. The molecular interaction between ß-sitosterol and the protein target showed a lower binding affinity value than the native ligand and other positive controls for each protein. Based on the amino acid residue bound to the ligands, ß-sitosterol on MurA and SrtA is not competitive to the positive control, showing potential as a natural antibacterial agent. Meanwhile, on the MurB and PBP, ß-sitosterol and positive control do compete with each other. CONCLUSION: The compound, isolated from O. basilicum L. leaf, was determined as ß-sitosterol, which has the molecular formula C29H50O. The antibacterial activity of ß-sitosterol by in vitro assay showed weak antibacterial activity, yet exhibited the potential to inhibit the biosynthesis of peptidoglycan and prevent bacteria cell wall formation by inhibiting MurA and SrtA activity via docking simulation.

3.
Curr Drug Discov Technol ; 18(4): 532-541, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32652913

RESUMO

BACKGROUND: Streptococcus mutans and Streptococcus sanguinis are Gram-positive bacteria that cause dental caries. MurA enzyme acts as a catalyst in the formation of peptidoglycan in bacterial cell walls, making it ideal as an antibacterial target. Basil (Ocimum americanum) is an edible plant that is diverse and has been used as a herbal medicine for a long time. It has been reported that basil has a pharmacological effect as well as antibacterial activity. The purpose of this study was to identify antibacterial compounds in O. americanum and analyze their inhibition activity on MurA enzyme. METHODS: Fresh leaves from O. americanum were extracted with n-hexane and purified by a combination of column chromatography on normal and reverse phases together with in vitro bioactivity assay against S. mutans ATCC 25175 and S. sanguinis ATCC 10556, respectively, while in silico molecular docking simulation of lauric acid (1) was conducted using PyRx 0.8. RESULTS: The structure determination of antibacterial compound by spectroscopic methods resulted in an active compound lauric acid (1). The in vitro evaluation of antibacterial activity in compound 1 showed Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values of 78.13 and 156.3 ppm and 1250 and 2500 ppm against S. sanguinis and S. mutans, respectively. Further analysis and in silico evaluation determined lauric acid (1) as MurA Enzyme inhibitor. Lauric acid (1) showed a binding affinity of -5.2 Kcal/mol, which was higher than fosfomycin. CONCLUSION: Lauric acid showed the potential as a new natural antibacterial agent through MurA inhibition in bacterial cell wall biosynthesis.


Assuntos
Antibacterianos/farmacologia , Cárie Dentária/tratamento farmacológico , Ácidos Láuricos/farmacologia , Ocimum basilicum/química , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Antibacterianos/isolamento & purificação , Antibacterianos/uso terapêutico , Cárie Dentária/microbiologia , Humanos , Ácidos Láuricos/isolamento & purificação , Ácidos Láuricos/uso terapêutico , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Folhas de Planta/química , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Streptococcus sanguis/efeitos dos fármacos , Streptococcus sanguis/enzimologia
4.
Drug Des Devel Ther ; 14: 2977-2985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32801638

RESUMO

BACKGROUND: Streptococcus sanguinis is Gram-positive bacteria that contribute to caries. Many antibacterial agents are resistant against bacteria so that the discovery of new antibacterial agents is a crucial issue. Mechanism of antibacterial agents by disrupting cell wall bacteria is a promising target to be developed. One of the enzymes contributing to the cell wall is MurA enzyme. MurA is an enzyme catalyzing the first step of peptidoglycan biosynthesis in the cell wall formation. Inhibiting MurA is an effective and efficient way to kill the bacteria. Source of bioactive compounds including the antibacterial agent can be found in natural product such as herbal plant. Piper betle L. was reported to contain active antibacterial compounds. However, there is no more information on the antibacterial activity and molecular mechanism of P. betle's compound against S. sanguinis. PURPOSE: The study aims to identify antibacterial constituents of P. betle L. and evaluate their activities through two different methods including in vitro and in silico analysis. MATERIALS AND METHODS: The antibacterial agent was purified by bioactivity-guided isolation with combination chromatography methods and the chemical structure was determined by spectroscopic methods. The in vitro antibacterial activity was evaluated by disc diffusion and dilution methods while the in silico study of a compound binds on the MurA was determined using PyRx program. RESULTS: The antibacterial compound identified as allylpyrocatechol showed inhibitory activity against S. sanguinis with an inhibition zone of 11.85 mm at 1%, together with MIC and MBC values of 39.1 and 78.1 µg/mL, respectively. Prediction for molecular inhibition mechanism of allylpyrocatechols against the MurA presented two allylpyrocatechol derivatives showing binding activity of -5.4, stronger than fosfomycin as a reference with the binding activity of -4.6. CONCLUSION: Two allylpyrocatechol derivatives were predicted to have a good potency as a novel natural antibacterial agent against S. sanguinis through blocking MurA activity that causes disruption of bacterial cell wall.


Assuntos
Alquil e Aril Transferases/antagonistas & inibidores , Antibacterianos/farmacologia , Catecóis/farmacologia , Inibidores Enzimáticos/farmacologia , Extratos Vegetais/farmacologia , Streptococcus sanguis/efeitos dos fármacos , Alquil e Aril Transferases/metabolismo , Antibacterianos/química , Antibacterianos/isolamento & purificação , Catecóis/química , Catecóis/isolamento & purificação , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piper betle/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Streptococcus sanguis/enzimologia , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...