Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 30(30): 305801, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29888709

RESUMO

Oxygen vacancies can be of utmost importance for improving or deteriorating physical properties of oxide materials. Here, we studied from first-principles the electronic and magnetic properties of oxygen vacancies in the double perovskite Sr2FeMoO6 (SFMO). We show that oxygen vacancies can increase the Curie temperature in SFMO, although the total magnetic moment is reduced at the same time. We found also that the experimentally observed valence change of the Fe ions from 3+ to 2+ in the x-ray magnetic circular dichroism (XMCD) measurements is better explained by oxygen vacancies than by the assumed mixed valence state. The agreement of the calculated x-ray absorption spectra and XMCD results with experimental data is considerably improved by inclusion of oxygen vacancies.

2.
ACS Appl Mater Interfaces ; 8(31): 20440-7, 2016 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-27447197

RESUMO

To actualize the high spintronic application potential of complex magnetic oxides, it is essential to fabricate these materials as thin films with the best possible magnetic and electrical properties. Sr2FeMoO6 is an outstanding candidate for such applications, but presently no thin film synthesis route, which would preserve the magnetic properties of bulk Sr2FeMoO6, is currently known. In order to address this problem, we present a comprehensive experimental and theoretical study where we link the magnetic and half metallic properties of Sr2FeMoO6 thin films to lattice strain, Fe-Mo antisite disorder and oxygen vacancies. We find the intrinsic effect of strain on the magnetic properties to be very small, but also that an increased strain will significantly stabilize the Sr2FeMoO6 lattice against the formation of antisite disorder and oxygen vacancies. These defects, on the other hand, are recognized to drastically influence the magnetism of Sr2FeMoO6 in a nonlinear manner. On the basis of the findings, we propose strain manipulation and reductive annealing as optimization pathways for improving the spintronic functionality of Sr2FeMoO6.

3.
J Phys Condens Matter ; 28(1): 016003, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26657257

RESUMO

A standard local density approximation and its self-interaction corrected version are applied to study spontaneous magnetization, promoted by localized p electron holes, of polar oxygen-terminated ZnO surfaces. The electronic properties and magnetic exchange interactions of three different facets are calculated. It is demonstrated that partially filled oxygen p orbitals of the polar surfaces exhibit magnetic moment formation and long range magnetic order leading to the occurrence of a ferromagnetic ground state. Monte Carlo simulations predict Curie temperatures above room temperature. In contrast to isolated defects in bulk materials, applying correlation corrections to the localized p-like surface states does not lead to a collapse of magnetic interaction: as the weakening of the magnetic interaction, caused by the reduced electronic overlap, is compensated by a strengthening due to an increase of the magnetic moments, the ferromagnetism can principally persist above room temperature, provided a large hole concentration exists.

4.
J Phys Condens Matter ; 27(43): 435202, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26447352

RESUMO

For a reliable fully-relativistic Korringa-Kohn-Rostoker Green function method, an accurate solution of the underlying single-site scattering problem is necessary. We present an extensive discussion on numerical solutions of the related differential equations by means of standard methods for a direct solution and by means of integral equations. Our implementation is tested and exemplarily demonstrated for a spherically symmetric treatment of a Coulomb potential and for a Mathieu potential to cover the full-potential implementation. For the Coulomb potential we include an analytic discussion of the asymptotic behaviour of irregular scattering solutions close to the origin (r << 1).

5.
Nature ; 503(7475): 242-6, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24226888

RESUMO

Single magnetic atoms, and assemblies of such atoms, on non-magnetic surfaces have recently attracted attention owing to their potential use in high-density magnetic data storage and as a platform for quantum computing. A fundamental problem resulting from their quantum mechanical nature is that the localized magnetic moments of these atoms are easily destabilized by interactions with electrons, nuclear spins and lattice vibrations of the substrate. Even when large magnetic fields are applied to stabilize the magnetic moment, the observed lifetimes remain rather short (less than a microsecond). Several routes for stabilizing the magnetic moment against fluctuations have been suggested, such as using thin insulating layers between the magnetic atom and the substrate to suppress the interactions with the substrate's conduction electrons, or coupling several magnetic moments together to reduce their quantum mechanical fluctuations. Here we show that the magnetic moments of single holmium atoms on a highly conductive metallic substrate can reach lifetimes of the order of minutes. The necessary decoupling from the thermal bath of electrons, nuclear spins and lattice vibrations is achieved by a remarkable combination of several symmetries intrinsic to the system: time reversal symmetry, the internal symmetries of the total angular momentum and the point symmetry of the local environment of the magnetic atom.

6.
Ultramicroscopy ; 133: 101-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23969065

RESUMO

We numerically simulate low-loss Electron Energy Loss Spectroscopy (EELS) of isolated spheroidal nanoparticles, using an electromagnetic model based on a Generalized Multipole Technique (GMT). The GMT is fast and accurate, and, in principle, flexible regarding nanoparticle shape and the incident electron beam. The implemented method is validated against reference analytical and numerical methods for plane-wave scattering by spherical and spheroidal nanoparticles. Also, simulated electron energy loss (EEL) spectra of spherical and spheroidal nanoparticles are compared to available analytical and numerical solutions. An EEL spectrum is predicted numerically for a prolate spheroidal aluminum nanoparticle. The presented method is the basis for a powerful tool for the computation, analysis and interpretation of EEL spectra of general geometric configurations.


Assuntos
Nanopartículas/química , Espectroscopia de Perda de Energia de Elétrons/métodos , Elétrons , Modelos Teóricos
7.
Nano Lett ; 12(9): 4805-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22906055

RESUMO

Magnetic anisotropy and magnetization dynamics of rare earth Gd atoms and dimers on Pt(111) and Cu(111) were investigated with inelastic tunneling spectroscopy. The spin excitation spectra reveal that giant magnetic anisotropies and lifetimes of the excited states of Gd are nearly independent of the supporting surfaces and the cluster size. In combination with theoretical calculations, we argue that the observed features are caused by strongly localized character of 4f electrons in Gd atoms and clusters.


Assuntos
Gadolínio/química , Nanopartículas Metálicas/química , Modelos Químicos , Simulação por Computador , Campos Magnéticos , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Metais Terras Raras/química , Tamanho da Partícula , Propriedades de Superfície
8.
Ultramicroscopy ; 117: 46-52, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22659235

RESUMO

In this paper, we present the application of the T-Matrix method (TMM) for the calculation of Electron Energy Loss Spectra (EELS), cathodoluminescence spectra (CLS) and far-field patterns produced by metallic nano-particles. Being frequently used in electromagnetic scattering calculations, the TMM provides an efficient tool for EELS calculations as well and can be employed, e.g. for the investigation of nano-antennas.

9.
Opt Express ; 19(9): 8939-53, 2011 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-21643147

RESUMO

Four widely used electromagnetic field solvers are applied to the problem of scattering by a spherical or spheroidal silver nanoparticle in glass. The solvers are tested in a frequency range where the imaginary part of the scatterer refractive index is relatively large. The scattering efficiencies and near-field results obtained by the different methods are compared to each other, as well as to recent experiments on laser-induced shape transformation of silver nanoparticles in glass.


Assuntos
Nanopartículas/química , Refratometria/métodos , Prata/química , Teste de Materiais , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...