Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(19)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998232

RESUMO

Estrogenic steroids and adenosine A2A receptors promote the wound healing and angiogenesis processes. However, so far, it is unclear whether estrogen may regulate the expression and pro-angiogenic activity of A2A receptors. Using in vivo analyses, we showed that female wild type (WT) mice have a more rapid wound healing process than female or male A2A-deficient mice (A2AKO) mice. We also found that pulmonary endothelial cells (mPEC) isolated from female WT mice showed higher expression of A2A receptor than mPEC from male WT mice. mPEC from female WT mice were more sensitive to A2A-mediated pro-angiogenic response, suggesting an ER and A2A crosstalk, which was confirmed using cells isolated from A2AKO. In those female cells, 17ß-estradiol potentiated A2A-mediated cell proliferation, an effect that was inhibited by selective antagonists of estrogen receptors (ER), ERα, and ERß. Therefore, estrogen regulates the expression and/or pro-angiogenic activity of A2A adenosine receptors, likely involving activation of ERα and ERß receptors. Sexual dimorphism in wound healing observed in the A2AKO mice process reinforces the functional crosstalk between ER and A2A receptors.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio/genética , Neovascularização Fisiológica/efeitos dos fármacos , Receptor A2A de Adenosina/genética , Ferimentos Penetrantes/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/antagonistas & inibidores , Receptor beta de Estrogênio/metabolismo , Feminino , Regulação da Expressão Gênica , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/genética , Fenetilaminas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Receptor Cross-Talk , Receptor A2A de Adenosina/metabolismo , Fatores Sexuais , Transdução de Sinais , Cicatrização/efeitos dos fármacos , Cicatrização/genética , Ferimentos Penetrantes/tratamento farmacológico , Ferimentos Penetrantes/metabolismo , Ferimentos Penetrantes/patologia
2.
Purinergic Signal ; 16(3): 427-437, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32808144

RESUMO

We aim to investigate the role of A2A receptor in peritonitis-related sepsis by injection of a fecal solution (FS) as a model of polymicrobial infection. C57/black J6 wild-type (WT) and A2A-deficient mice (A2AKO) were exposed to sepsis induced by intraperitoneal injection of a FS (FS-induced peritonitis) or instead was injected with saline buffer (Sham). Survival rate and sepsis score were measured up to 48 h. The presence of bacteria in tissue homogenates was analyzed. Telemetry and speckle laser Doppler were used for systemic blood pressure and peripheral blood perfusion analysis, respectively. Histological analysis and identification of active caspase 3 were performed in selected organs, including the liver. The survival rate of A2AKO mice exposed to FS-induced peritonitis was significantly higher, and the sepsis score was lower than their respective WT counterpart. Injection of FS increases (50 to 150 folds) the number of colonies forming units in the liver, kidney, blood, and lung in WT mice, while these effects were significantly attenuated in A2AKO mice exposed to FS-induced peritonitis. A significant reduction in both systolic and diastolic blood pressure, as well as in the peripheral perfusion was observed in WT and A2AKO mice exposed to FS-induced peritonitis. Although, these last effects were significantly attenuated in A2AKO mice. Histological analysis showed a large perivascular infiltration of polymorphonuclear in the liver of WT and A2AKO mice exposed to FS-induced peritonitis, but again, this effect was attenuated in A2AKO mice. Finally, high expression of active caspase 3 was found only in the liver of WT mice exposed to FS-induced peritonitis. The absence of the A2A receptor increases the survival rate in mice exposed to polymicrobial sepsis. This outcome was associated with both hemodynamic compensation and enhanced anti-bacterial response.


Assuntos
Peritonite/metabolismo , Receptor A2A de Adenosina/metabolismo , Sepse/metabolismo , Animais , Pressão Sanguínea/fisiologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Peritonite/genética , Peritonite/microbiologia , Peritonite/mortalidade , Receptor A2A de Adenosina/genética , Sepse/genética , Sepse/mortalidade , Taxa de Sobrevida
3.
PLoS One ; 12(8): e0182509, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28817576

RESUMO

Placentas from gestational diabetes mellitus (GDM) are often hypervascularized; however, participation of vascular endothelial growth factor (VEGF) and its receptors in this placental adaptation is unclear. We aimed to test whether changes in phosphorylation of tyrosine 951 or tyrosine 1175 (pY951 or pY1175) of the vascular endothelial growth factor receptor 2 (KDR) are associated with the proangiogenic state observed in placentas from GDM. We obtained placental samples from women with normal pregnancies (n = 24) or GDM (n = 18). We measured the relative expression of markers for endothelial cell number (CD31, CD34), VEGF, vascular endothelial growth factor receptor 1 (Flt-1), KDR, pY951 and pY1175 of KDR in placental homogenate. Immunohistochemistry of placental blood vessels were performed using CD34. Proliferation and migration of human umbilical vein endothelial cells (HUVEC) obtained from normal pregnancy and GDM were determined in absence or presence of conditioned medium (CM) harvested from GDM or normoglycemic HUVEC cultures. GDM was associated with more CD31 and CD34 protein compared to normal pregnancy. High number, but reduced area of placental blood vessels was found in GDM. Reduced Flt-1 levels (mRNA and protein) are associated with reduced KDR mRNA, but higher KDR protein levels in placentas from GDM. No significant changes in Y951-or Y1175-phosphorylation of KDR in placentas from GDM were found. GDM did not alter proliferation of HUVECs, but enhanced migration. Conditioned medium harvested from GDM HUVEC cultures enhanced KDR protein amount, tube formation capacity and cell migration in HUVEC isolated from normoglycemic pregnancies. The data indicate that GDM is associated with reduced expression of Flt-1 but high pro-migratory activation of KDR reflecting a proangiogenic state in GDM.


Assuntos
Movimento Celular , Diabetes Gestacional/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Adulto , Antígenos CD34/genética , Antígenos CD34/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Diabetes Gestacional/diagnóstico , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Recém-Nascido , Masculino , Placenta/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética
4.
Endocrinol. diabetes nutr. (Ed. impr.) ; 64(6): 317-327, jun.-jul. 2017. ilus
Artigo em Espanhol | IBECS | ID: ibc-171728

RESUMO

La inflamación generada en el tejido adiposo o lipoinflamación, puede contribuir al desarrollo de la resistencia a la insulina. Los mecanismos asociados a la lipoinflamación están relacionados con la función de los adipocitos y los macrófagos presentes en el tejido adiposo. En este contexto, el nivel del nucleósido adenosina está aumentado en individuos con obesidad. Las causas o consecuencias de este aumento no se conocen. Aunque, adenosina al activar a sus receptores (A1, A2A, A2B y A3) es capaz de modular diferencialmente la función de adipocitos y macrófagos, con el fin de evitar la reducción de la sensibilidad a la insulina y generar un estado antiinflamatorio en el individuo con obesidad. En esta revisión proponemos que adenosina podría ser un elemento clave en el desarrollo de nuevas estrategias para el control de la lipoinflamación y homeostasis metabólica a través de la regulación del diálogo adipocito-macrófago (AU)


Lipoinflamation is the inflammation generated in the adipose tissue. It can contribute to the development of insulin resistance. The lipoinflammation-associated mechanisms are related to the function of adipocytes and macrophages present in the adipose tissue. In this regard, the level of nucleoside adenosine is increased in individuals with obesity. Causes or consequences of this increase are unknown. Although, adenosine activating its receptors (A1, A2A, A2B and A3) is able to differentially modulate the function of adipocytes and macrophages, in order to avoid the reduction of insulin sensitivity and generate an anti-inflammatory state in subject with obesity. In this review we propose that adenosine could be a key element in the development of new strategies for limit lipoinflammation and regulate metabolic homeostasis through modulation of adipocyte-macrophage dialogue (AU)


Assuntos
Humanos , Adenosina/metabolismo , Adipócitos/metabolismo , Obesidade/diagnóstico , Interleucinas/análise , Receptor A2A de Adenosina/análise , Macrófagos , Receptor A2B de Adenosina/análise , Tecido Adiposo , Obesidade/complicações
5.
Endocrinol Diabetes Nutr ; 64(6): 317-327, 2017.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-28604342

RESUMO

Lipoinflamation is the inflammation generated in the adipose tissue. It can contribute to the development of insulin resistance. The lipoinflammation-associated mechanisms are related to the function of adipocytes and macrophages present in the adipose tissue. In this regard, the level of nucleoside adenosine is increased in individuals with obesity. Causes or consequences of this increase are unknown. Although, adenosine activating its receptors (A1, A2A, A2B and A3) is able to differentially modulate the function of adipocytes and macrophages, in order to avoid the reduction of insulin sensitivity and generate an anti-inflammatory state in subject with obesity. In this review we propose that adenosine could be a key element in the development of new strategies for limit lipoinflammation and regulate metabolic homeostasis through modulation of adipocyte-macrophage dialogue.


Assuntos
Adenosina/fisiologia , Adipócitos/fisiologia , Macrófagos/fisiologia , Obesidade/fisiopatologia , Receptores Purinérgicos P1/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Comunicação Celular , Homeostase , Humanos , Inflamação/etiologia , Inflamação/fisiopatologia , Resistência à Insulina , Interleucinas/metabolismo , Camundongos , Modelos Biológicos , Ratos
6.
Front Physiol ; 8: 204, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28424632

RESUMO

The underlying molecular mechanisms involve in the regulation of the angiogenic process by insulin are not well understood. In this review article, we aim to describe the role of insulin and insulin receptor activation on the control of angiogenesis and how these mechanisms can be deregulated in human diseases. Functional expression of insulin receptors and their signaling pathways has been described on endothelial cells and pericytes, both of the main cells involved in vessel formation and maturation. Consequently, insulin has been shown to regulate endothelial cell migration, proliferation, and in vitro tubular structure formation through binding to its receptors and activation of intracellular phosphorylation cascades. Furthermore, insulin-mediated pro-angiogenic state is potentiated by generation of vascular growth factors, such as the vascular endothelial growth factor, produced by endothelial cells. Additionally, diseases such as insulin resistance, obesity, diabetes, and cancer may be associated with the deregulation of insulin-mediated angiogenesis. Despite this knowledge, the underlying molecular mechanisms need to be elucidated in order to provide new insights into the role of insulin on angiogenesis.

7.
Purinergic Signal ; 13(1): 51-60, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27696086

RESUMO

We aim to investigate whether A2A/nitric oxide-mediated regulation of vascular endothelial growth factor (VEGF) expression is impaired in feto-placental endothelial cells from late-onset pre-eclampsia. Cultures of human umbilical vein endothelial cells (HUVECs) and human placental microvascular endothelial cells (hPMECs) from normal and pre-eclamptic pregnancies were used. Assays by using small interference RNA (siRNA) for A2A were performed, and transfected cells were used for estimation of messenger RNA (mRNA) levels of VEGF, as well as for cell proliferation and angiogenesis in vitro. CGS-21680 (A2A agonist, 24 h) increases HUVEC and hPMEC proliferation in a dose response manner. Furthermore, similar to CGS-21680, the nitric oxide donor, S-nitroso-N-acetyl-penicillamine oxide (SNAP), increased cell proliferation in a dose response manner (logEC50 10-9.2 M). In hPMEC, CGS-21680 increased VEGF protein levels in both normal (∼1.5-fold) and pre-eclamptic pregnancies (∼1.2-fold), an effect blocked by the A2A antagonist, ZM-241385 (10-5 M) and the inhibitor of NO synthase, N ω-nitro-L-arginine methyl ester hydrochloride (L-NAME). Subsequently, SNAP partially recovered cell proliferation and in vitro angiogenesis capacity of cells from normal pregnancies exposed to siRNA for A2A. CGS-21680 also increased (∼1.5-fold) the level of VEGF mRNA in HUVEC from normal pregnancies, but not in pre-eclampsia. Additionally, transfection with siRNA for A2A decrease (∼30 %) the level of mRNA for VEGF in normal pregnancy compared to untransfected cells, an effect partially reversed by co-incubation with SNAP. The A2A-NO-VEGF pathway is present in endothelium from microcirculation and macrocirculation in both normal and pre-eclamptic pregnancies. However, NO signaling pathway seems to be impaired in HUVEC from pre-eclampsia.


Assuntos
Endotélio Vascular/metabolismo , Pré-Eclâmpsia/metabolismo , Receptor A2A de Adenosina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Óxido Nítrico/metabolismo , Fenetilaminas/farmacologia , Gravidez , Transdução de Sinais/efeitos dos fármacos
8.
Front Physiol ; 7: 98, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047385

RESUMO

Preeclampsia is a syndrome characterized by hypertension during pregnancy, which is a leading cause of morbidity and mortality in both mother and newborn in developing countries. Some advances have increased the understanding of pathophysiology of this disease. For example, reduced utero-placental blood flow associated with impaired trophoblast invasion may lead to a hypoxic placenta that releases harmful materials into the maternal and feto-placental circulation and impairs endothelial function. Identification of these harmful materials is one of the hot topics in the literature, since these provide potential biomarkers. Certainty, such knowledge will help us to understand the miscommunication between mother and fetus. In this review we highlight how placental extracellular vesicles and their cargo, such as small RNAs (i.e., microRNAs), might be involved in endothelial dysfunction, and then in the angiogenesis process, during preeclampsia. Currently only a few reports have addressed the potential role of endothelial regulatory miRNA in the impaired angiogenesis in preeclampsia. One of the main limitations in this area is the variability of the analyses performed in the current literature. This includes variability in the size of the particles analyzed, and broad variation in the exosomes considered. The quantity of microRNA targets genes suggest that practically all endothelial cell metabolic functions might be impaired. More studies are required to investigate mechanisms underlying miRNA released from placenta upon endothelial function involved in the angiogenenic process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...