Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Cancer ; 130(9): 1453-1462, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38429437

RESUMO

BACKGROUND: FOXL2 is a transcription factor expressed in ovarian granulosa cells. A somatic variant of FOXL2 (c.402 C > G, p.Cys134Trp) is the hallmark of adult-type granulosa cell tumours. METHODS: We generated KGN cell clones either heterozygous for this variant (MUT) or homozygous for the wild-type (WT) allele by CRISPR/Cas9 editing. They underwent RNA-Seq and bioinformatics analyses to uncover pathways impacted by deregulated genes. Cell morphology and migration were studied. RESULTS: The differentially expressed genes (DEGs) between WT/MUT and WT/WT KGN cells (DEGs-WT/MUT), pointed to several dysregulated pathways, like TGF-beta pathway, cell adhesion and migration. Consistently, WT/MUT cells were rounder than WT/WT cells and displayed a different distribution of stress fibres and paxillin staining. A comparison of the DEGs-WT/MUT with those found when FOXL2 was knocked down (KD) in WT/WT KGN cells showed that most DEGs-WT/MUT cells were not so in the KD experiment, supporting a gain-of-function (GOF) scenario. MUT-FOXL2 also displayed a stronger interaction with SMAD3. CONCLUSIONS: Our work, aiming at better understanding the GOF scenario, shows that the dysregulated genes and pathways are consistent with this idea. Besides, we propose that GOF might result from an enhanced interaction with SMAD3 that could underlie an ectopic capacity of mutated FOXL2 to bind SMAD4.


Assuntos
Proteína Forkhead Box L2 , Tumor de Células da Granulosa , Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Humanos , Feminino , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Sistemas CRISPR-Cas , Regulação Neoplásica da Expressão Gênica
2.
FASEB J ; 35(4): e21355, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33749886

RESUMO

FOXL2 and ESR2 are key transcriptional regulators in ovarian granulosa cells. To explore their transcriptional roles and their interplay, we have depleted Foxl2 and Esr2 in mouse primary granulosa cells to assess their ability to bind their targets and/or to modulate gene expression and cellular functions. We show that FOXL2 is involved in a large number of regulatory actions essential for the maintenance of granulosa cell fate. A parallel ChIP-seq analysis showed that FOXL2 mainly binds to sites located in intergenic regions quite far from its targets. A bioinformatic analysis demonstrated that FOXL2-activated genes were enriched in peaks associated with the H3K27ac mark, whereas FOXL2-repressed genes were not, suggesting that FOXL2 can activate transcription through binding to enhancer sites. We also identified about 500 deregulated genes upon Esr2 silencing, of which one third are also targets of FOXL2. We provide evidence showing that both factors modulate, through a coherent feed-forward loop, a number of common targets. Many of the FOXL2/ESR2 targets are involved in cell motility and, consistently, granulosa cells depleted for either Foxl2 or Esr2 exhibit decreased migration, invasion and adhesion. This effect is paralleled by the depletion of their target Phactr1, involved in actin cytoskeleton dynamics. Our analysis expands the number of direct and indirect transcriptional targets of both FOXL2 and ESR2, which deserve investigation in the context of adult-type granulosa cell tumors whose molecular diagnostic hallmark is the presence of the C134W FOXL2 pathogenic variant.


Assuntos
Receptor beta de Estrogênio/metabolismo , Proteína Forkhead Box L2/metabolismo , Células da Granulosa/fisiologia , Animais , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Receptor beta de Estrogênio/genética , Feminino , Proteína Forkhead Box L2/genética , Edição de Genes , Camundongos
3.
Trends Genet ; 37(5): 460-475, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33303287

RESUMO

Forkhead box (FOX) proteins belong to an evolutionarily conserved family of transcription factors that has evolved by gene/genome duplication. FOX family members have undergone sequence and regulatory diversification. However, they have retained some degree of functional redundancy, in addition to playing specific roles, both during development and in the adult. Genetic alterations or misregulation of FOX genes underlie human genetic diseases, cancer, and/or aging. In this review, we provide an updated overview of the main characteristics of the members of this family, in terms of breadth of expression, protein domain composition, evolution, and function.


Assuntos
Evolução Molecular , Fatores de Transcrição Forkhead/metabolismo , Neoplasias/genética , Envelhecimento/fisiologia , Animais , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Doenças Genéticas Inatas/genética , Humanos , Camundongos , Família Multigênica
4.
FASEB J ; 34(1): 571-587, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914586

RESUMO

Beyond the study of its transcriptional target genes, the identification of the various interactors of a transcription factor (TF) is crucial to understand its diverse cellular roles. We focused on FOXL2, a winged-helix forkhead TF important for ovarian development and maintenance. FOXL2 has been implicated in diverse cellular processes, including apoptosis, the control of cell cycle or the regulation of steroid hormone synthesis. To reliably identify partners of endogenous FOXL2, we performed a proteome-wide analysis using co-immunoprecipitation in the murine granulosa cell-derived AT29c and the pituitary-derived alpha-T3 cell lines, using three antibodies targeting different parts of the protein. Following a stringent selection of mass spectrometry data on the basis of identification reliability and protein enrichment, we identified a core set of 255 partners common to both cell lines. Their analysis showed that we could co-precipitate several complexes involved in mRNA processing, chromatin remodeling and DNA replication and repair. We further validated (direct and/or indirect) interactions with selected partners, suggesting an unexpected role for FOXL2 in those processes. Overall, this comprehensive analysis of the endogenous FOXL2 interactome sheds light on its numerous and diverse interactors and unconventional cellular roles.


Assuntos
Proteína Forkhead Box L2/metabolismo , Células da Granulosa/metabolismo , Hipófise/metabolismo , Mapas de Interação de Proteínas , Proteoma/metabolismo , Animais , Células Cultivadas , Feminino , Células da Granulosa/citologia , Camundongos , Hipófise/citologia , Proteoma/análise
5.
Mol Cell Proteomics ; 18(7): 1307-1319, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30992313

RESUMO

The PI3K/AKT signaling pathway is known to regulate a broad range of cellular processes, and it is often altered in several types of cancers. Recently, somatic AKT1 mutations leading to a strong activation of this kinase have been reported in juvenile granulosa cell tumors. However, the molecular role of AKT1 in the supporting cell lineage of the ovary is still poorly understood. To get insights into its function in such cells, we depleted Akt1 in murine primary granulosa cells and assessed the molecular consequences at both the transcript and protein levels. We were able to corroborate the involvement of AKT1 in the regulation of metabolism, apoptosis, cell cycle, or cytoskeleton dynamics in this ovarian cell type. Consistently, we showed in established granulosa cells that depletion of Akt1 provoked altered directional persistent migration and increased its velocity. This study also allowed us to put forward new direct and indirect targets of the kinase. Indeed, a series of proteins involved in intracellular transport and mitochondrial physiology were significantly affected by Akt1 depletion. Using in silico analyses, we also propose a set of kinases and transcription factors that can mediate the action of AKT1 on the deregulated transcripts and proteins. Taken altogether, our results provide a resource of direct and indirect AKT1 targets in granulosa cells and may help understand its roles in this ovarian cell type.


Assuntos
Células da Granulosa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Linhagem Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica , Genoma , Camundongos , Peptídeos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...