Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 55, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238701

RESUMO

BACKGROUND: This study examines the biological implications of an overlap between two sequences in the Arabidopsis genome, the 3'UTR of the PHOT2 gene and a putative AT5G58150 gene, encoded on the complementary strand. AT5G58150 is a probably inactive protein kinase that belongs to the transmembrane, leucine-rich repeat receptor-like kinase family. Phot2 is a membrane-bound UV/blue light photoreceptor kinase. Thus, both proteins share their cellular localization, on top of the proximity of their loci. RESULTS: The extent of the overlap between 3'UTR regions of AT5G58150 and PHOT2 was found to be 66 bp, using RACE PCR. Both the at5g58150 T-DNA SALK_093781C (with insertion in the promoter region) and 35S::AT5G58150-GFP lines overexpress the AT5G58150 gene. A detailed analysis did not reveal any substantial impact of PHOT2 or AT5G58150 on their mutual expression levels in different light and osmotic stress conditions. AT5G58150 is a plasma membrane protein, with no apparent kinase activity, as tested on several potential substrates. It appears not to form homodimers and it does not interact with PHOT2. Lines that overexpress AT5G58150 exhibit a greater reduction in lateral root density due to salt and osmotic stress than wild-type plants, which suggests that AT5G58150 may participate in root elongation and formation of lateral roots. In line with this, mass spectrometry analysis identified proteins with ATPase activity, which are involved in proton transport and cell elongation, as putative interactors of AT5G58150. Membrane kinases, including other members of the LRR RLK family and BSK kinases (positive regulators of brassinosteroid signalling), can also act as partners for AT5G58150. CONCLUSIONS: AT5G58150 is a membrane protein that does not exhibit measurable kinase activity, but is involved in signalling through interactions with other proteins. Based on the interactome and root architecture analysis, AT5G58150 may be involved in plant response to salt and osmotic stress and the formation of roots in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regiões 3' não Traduzidas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/genética , Fosforilação , Plantas/genética , Proteínas Quinases/genética
2.
Plant J ; 114(2): 390-402, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36794876

RESUMO

Directional movements impact the ability of plants to respond and adjust their growth accordingly to the prevailing light environment. The plasma-membrane associated protein, ROOT PHOTOTROPISM 2 (RPT2) is a key signalling component involved in chloroplast accumulation movement, leaf positioning, and phototropism, all of which are regulated redundantly by the ultraviolet/blue light-activated AGC kinases phototropin 1 and 2 (phot1 and phot2). We recently demonstrated that members of the NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3)/RPT2-like (NRL) family in Arabidopsis thaliana, including RPT2, are directly phosphorylated by phot1. However, whether RPT2 is a substrate for phot2, and the biological significance of phot phosphorylation of RPT2 remains to be determined. Here, we show that RPT2 is phosphorylated by both phot1 and phot2 at a conserved serine residue (S591) within the C-terminal region of the protein. Blue light triggered the association of 14-3-3 proteins with RPT2 consistent with S591 acting as a 14-3-3 binding site. Mutation of S591 had no effect on the plasma membrane localization of RPT2 but reduced its functionality for leaf positioning and phototropism. Moreover, our findings indicate that S591 phosphorylation within the C-terminus of RPT2 is required for chloroplast accumulation movement to low level blue light. Taken together, these findings further highlight the importance of the C-terminal region of NRL proteins and how its phosphorylation contributes to phot receptor signalling in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fototropismo/genética , Fosforilação , Fototropinas/genética , Fototropinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Plantas Geneticamente Modificadas/genética , Luz , Folhas de Planta/metabolismo , Cloroplastos/metabolismo , Fosfoproteínas/metabolismo
3.
J Exp Bot ; 73(18): 6034-6051, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-35781490

RESUMO

Chloroplast movements are controlled by ultraviolet/blue light through phototropins. In Arabidopsis thaliana, chloroplast accumulation at low light intensities and chloroplast avoidance at high light intensities are observed. These responses are controlled by two homologous photoreceptors, the phototropins phot1 and phot2. Whereas chloroplast accumulation is triggered by both phototropins in a partially redundant manner, sustained chloroplast avoidance is elicited only by phot2. Phot1 is able to trigger only a small, transient chloroplast avoidance, followed by the accumulation phase. The source of this functional difference is not fully understood at either the photoreceptor or the signalling pathway levels. In this article, we review current understanding of phototropin functioning and try to dissect the differences that result in signalling to elicit two distinct chloroplast responses. First, we focus on phototropin structure and photochemical and biochemical activity. Next, we analyse phototropin expression and localization patterns. We also summarize known photoreceptor systems controlling chloroplast movements. Finally, we focus on the role of environmental stimuli in controlling phototropin activity. All these aspects impact the signalling to trigger chloroplast movements and raise outstanding questions about the mechanism involved.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fototropinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Luz , Fosfoproteínas/metabolismo
4.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673252

RESUMO

Senescence is the final stage of plant development, affecting individual organs or the whole organism, and it can be induced by several environmental factors, including shading or darkness. Although inevitable, senescence is a complex and tightly regulated process, ensuring optimal remobilization of nutrients and cellular components from senescing organs. Photoreceptors such as phytochromes and cryptochromes are known to participate in the process of senescence, but the involvement of phototropins has not been studied to date. We investigated the role of these blue light photoreceptors in the senescence of individually darkened Arabidopsis thaliana leaves. We compared several physiological and molecular senescence markers in darkened leaves of wild-type plants and phototropin mutants (phot1, phot2, and phot1phot2). In general, all the symptoms of senescence (lower photochemical activity of photosystem II, photosynthetic pigment degradation, down-regulation of photosynthetic genes, and up-regulation of senescence-associated genes) were less pronounced in phot1phot2, as compared to the wild type, and some also in one of the single mutants, indicating delayed senescence. This points to different mechanisms of phototropin operation in the regulation of senescence-associated processes, either with both photoreceptors acting redundantly, or only one of them, phot1, playing a dominant role.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/genética , Proteínas Serina-Treonina Quinases/genética
5.
Plant Cell Physiol ; 62(4): 693-707, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33594440

RESUMO

The disruption of the sumoylation pathway affects processes controlled by the two phototropins (phots) of Arabidopsis thaliana, phot1 and phot2. Phots, plant UVA/blue light photoreceptors, regulate growth responses and fast movements aimed at optimizing photosynthesis, such as phototropism, chloroplast relocations and stomatal opening. Sumoylation is a posttranslational modification, consisting of the addition of a SUMO (SMALL UBIQUITIN-RELATED MODIFIER) protein to a lysine residue in the target protein. In addition to affecting the stability of proteins, it regulates their activity, interactions and subcellular localization. We examined physiological responses controlled by phots, phototropism and chloroplast movements, in sumoylation pathway mutants. Chloroplast accumulation in response to both continuous and pulse light was enhanced in the E3 ligase siz1 mutant, in a manner dependent on phot2. A significant decrease in phot2 protein abundance was observed in this mutant after blue light treatment both in seedlings and mature leaves. Using plant transient expression and yeast two-hybrid assays, we found that phots interacted with SUMO proteins mainly through their N-terminal parts, which contain the photosensory LOV domains. The covalent modification in phots by SUMO was verified using an Arabidopsis sumoylation system reconstituted in bacteria followed by the mass spectrometry analysis. Lys 297 was identified as the main target of SUMO3 in the phot2 molecule. Finally, sumoylation of phot2 was detected in Arabidopsis mature leaves upon light or heat stress treatment.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ligases/genética , Ligases/metabolismo , Lisina/metabolismo , Mutação , Fototropismo/genética , Fototropismo/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Plântula/genética , Plântula/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação
6.
Front Plant Sci ; 10: 1279, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681376

RESUMO

We examined the impact of UV-B irradiation on chloroplast movements in Arabidopsis leaves. Directional chloroplast movements induced by blue light have been described in multiple plant species. In weak light, chloroplasts accumulate at periclinal cell walls to increase light capture. In strong light, chloroplasts exhibit the avoidance response, as they move towards anticlinal walls to protect the photosynthetic apparatus from light-induced damage. In Arabidopsis, chloroplast movements are triggered by phototropins, phot1 and phot2, which are known as blue/UV-A photoreceptors. We found that irradiation with UV-B of 3.3 µmol·m-2·s-1 induced chloroplast accumulation in wild-type plants. UV-B-triggered accumulation was dependent on the presence of phototropins, especially phot1, but not on UVR8 (the canonical UV-B photoreceptor). Irradiation with strong UV-B of 20 µmol·m-2·s-1 did not induce substantial chloroplast relocations in wild-type leaves. However, in the jac1 mutant, which is defective in chloroplast accumulation, strong UV-B elicited chloroplast avoidance. This indicated that UV-B can also activate signaling to the avoidance response. To assess the possibility of indirect effects of UV-B on chloroplast movements, we examined the impact of UV-B on the actin cytoskeleton, which serves as the motile system for chloroplast movements. While irradiation with UV-B of 3.3 µmol·m-2·s-1 did not affect the actin cytoskeleton, strong UV-B disrupted its structure as shown using an Arabidopsis line expressing Lifeact-green fluorescent protein (GFP). In wild-type plants, pretreatment with strong UV-B attenuated chloroplast responses triggered by subsequent blue light irradiation, further indicating that this UV-B intensity also indirectly affects chloroplast movements. Taken together, our results suggest that the effect of UV-B on chloroplast movement is twofold: it directly induces phototropin-mediated movements; however, at higher intensities, it attenuates the movements in a nonspecific manner.

7.
Acta Biochim Pol ; 66(3): 243-248, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31254977

RESUMO

The GLABRA (GL1) gene, belonging to the transcription factor-encoding myb gene family, is responsible for trichome formation in Arabidopsis thaliana (L.) Heynh. The leaves and stems of glabra1 mutant plants are devoid of trichomes. Having an easily observable phenotype, the gl1 mutation was one of the first markers established for genetic mapping of Arabidopsis thaliana. Since then, the GL1 gene has been assigned roles in other processes, also related to leaf structure. In this study we present some previously undescribed effects of the gl1 mutation on dark-induced senescence. This process was induced by covering selected mature leaves of Columbia wild-type and gl1 Arabidopsis with black paper for 4 days, while the plants remained growing in a normal photoperiod. While no visible differences in the external symptoms of senescence could be observed in the darkened leaves, the expression of senescence-associated genes was significantly lower in gl1 plants as compared to the wild type. The darkening of leaves led to a decrease in photosynthetic activity and the expression of photosynthesis-associated genes, in comparison to the control leaves. This effect was much less pronounced in gl1 than in the wild type plants. Therefore, gl1 plants seem to be less susceptible to dark-induced aging, suggesting a possible role for the GL1 gene in controlling the onset and progress of senescence. This result is also of practical importance, since gl1 is the genetic background of many other mutants. It may therefore be advisable to revise some of the results obtained with such mutants in light of findings presented here.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Senescência Celular/genética , Proteínas de Ligação a DNA/genética , Fotoperíodo , Folhas de Planta/genética , Clorofila A/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Mutação , Fenótipo , Fotossíntese/genética , RNA de Plantas/genética , Fatores de Tempo , Fatores de Transcrição/genética , Tricomas/crescimento & desenvolvimento , Xantofilas/metabolismo , beta Caroteno/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(25): 12550-12557, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31160455

RESUMO

The ability to enhance photosynthetic capacity remains a recognized bottleneck to improving plant productivity. Phototropin blue light receptors (phot1 and phot2) optimize photosynthetic efficiency in Arabidopsis thaliana by coordinating multiple light-capturing processes. In this study, we explore the potential of using protein engineering to improve photoreceptor performance and thereby plant growth. We demonstrate that targeted mutagenesis can decrease or increase the photocycle lifetime of Arabidopsis phototropins in vitro and show that these variants can be used to reduce or extend the duration of photoreceptor activation in planta Our findings show that slowing the phototropin photocycle enhanced several light-capturing responses, while accelerating it reduced phototropin's sensitivity for chloroplast accumulation movement. Moreover, plants engineered to have a slow-photocycling variant of phot1 or phot2 displayed increased biomass production under low-light conditions as a consequence of their improved sensitivity. Together, these findings demonstrate the feasibility of engineering photoreceptors to manipulate plant growth and offer additional opportunities to enhance photosynthetic competence, particularly under suboptimal light regimes.


Assuntos
Arabidopsis/metabolismo , Biomassa , Fotorreceptores de Plantas/metabolismo , Fototropinas/metabolismo , Engenharia de Proteínas , Cloroplastos/metabolismo , Luz , Mutagênese , Fotorreceptores de Plantas/genética , Fotossíntese , Fototropinas/genética
11.
Plant Cell Physiol ; 59(1): 44-57, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29069446

RESUMO

Pyrimidine dimers are the most important DNA lesions induced by UVB irradiation. They can be repaired directly by photoreactivation or indirectly by the excision repair pathways. Photoreactivation is carried out by photolyases, enzymes which bind to the dimers and use the energy of blue light or UVA to split bonds between adjacent pyrimidines. Arabidopsis thaliana has three known photolyases: AtPHR1, AtCRY3 and AtUVR3. Little is known about the cellular localization and regulation of AtUVR3 expression. We have found that its transcript level is down-regulated by light (red, blue or white) in a photosynthesis-dependent manner. The down-regulatory effect of red light is absent in mature leaves of the phyB mutant, but present in leaves of phyAphyB. UVB irradiation does not increase AtUVR3 expression in leaves. Transiently expressed AtUVR3-green fluorescent protein (GFP) is found in the nuclei, chloroplasts and mitochondria of Nicotiana benthamiana epidermal cells. In the nucleoplasm, AtUVR3-GFP is distributed uniformly, while in the nucleolus it forms speckles. Truncated AtUVR3 and muteins were used to identify the sequences responsible for its subcellular localization. Mitochondrial and chloroplast localization of AtUVR3 is independent of its N-terminal sequence. Amino acids located at the C-terminal loop of the protein are involved in its transport into chloroplasts and its retention inside the nucleolus.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Carbono-Carbono Liases/metabolismo , Núcleo Celular/enzimologia , Cloroplastos/enzimologia , Mitocôndrias/enzimologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carbono-Carbono Liases/genética , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Núcleo Celular/genética , Cloroplastos/genética , Regulação para Baixo/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luz , Mitocôndrias/genética , Mutação , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Plantas Geneticamente Modificadas , Transporte Proteico
12.
Nucleic Acids Res ; 46(1): 25-41, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29186524

RESUMO

Proliferating cell nuclear antigen (PCNA) is a multifunctional protein present in the nuclei of eukaryotic cells that plays an important role as a component of the DNA replication machinery, as well as DNA repair systems. PCNA was recently proposed as a potential non-oncogenic target for anti-cancer therapy. In this study, using the Systematic Evolution of Ligands by EXponential enrichment (SELEX) method, we developed a short DNA aptamer that binds human PCNA. In the presence of PCNA, the anti-PCNA aptamer inhibited the activity of human DNA polymerase δ and ϵ at nM concentrations. Moreover, PCNA protected the anti-PCNA aptamer against the exonucleolytic activity of these DNA polymerases. Investigation of the mechanism of anti-PCNA aptamer-dependent inhibition of DNA replication revealed that the aptamer did not block formation, but was a component of PCNA/DNA polymerase δ or ϵ complexes. Additionally, the anti-PCNA aptamer competed with the primer-template DNA for binding to the PCNA/DNA polymerase δ or ϵ complex. Based on the observations, a model of anti-PCNA aptamer/PCNA complex-dependent inhibition of DNA replication was proposed.


Assuntos
Replicação do DNA/genética , DNA/genética , Antígeno Nuclear de Célula em Proliferação/genética , Técnica de Seleção de Aptâmeros/métodos , Animais , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , DNA/metabolismo , DNA Polimerase III/metabolismo , Humanos , Cinética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica
13.
Acta Biochim Pol ; 64(3): 401-406, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28787470

RESUMO

Mushroom foraging is very popular in some regions of the world. Sometimes toxic and edible mushrooms are mistaken by mushroom collectors, leading to serious human poisoning. The group of mushrooms highly dangerous for human health includes Amanita phalloides. This mushroom produces a toxic octapeptide called α-amanitin which is an inhibitor of nuclear RNA polymerase II. The inhibition of this polymerase results in the abortion of mRNA synthesis. The ingestion of A. phalloides causes liver failure due to the fact that most of the toxin is uptaken by hepatocytes. The hospitalization of poisoned patients involves the removal of the toxin from the digestive tract, its dilution in the circulatory system and the administration of therapeutic adjuvants. Since there is no effective antidote against amanitin poisoning, in this study we developed a DNA aptamer exhibiting specific binding to α-amanitin. This aptamer was selected using the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) method. Next, its ability of toxin removal from aqueous solution was confirmed by pull-down assay. The aptamer region sufficient for α-amanitin binding was determined. Finally, the dissociation constant of the α-amanitin/DNA aptamer complex was calculated.


Assuntos
Alfa-Amanitina/metabolismo , Amanita/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Técnica de Seleção de Aptâmeros
14.
Bio Protoc ; 7(11): e2310, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34541077

RESUMO

Assessment of chloroplast movements by measuring changes in leaf transmittance is discussed, with special reference to the conditions necessary for reliable estimation of blue light-activated chloroplast responses.

15.
J Exp Bot ; 67(17): 4963-78, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27406783

RESUMO

Phototropins are plant photoreceptors which regulate numerous responses to blue light, including chloroplast relocation. Weak blue light induces chloroplast accumulation, whereas strong light leads to an avoidance response. Two Arabidopsis phototropins are characterized by different light sensitivities. Under continuous light, both can elicit chloroplast accumulation, but the avoidance response is controlled solely by phot2. As well as continuous light, brief light pulses also induce chloroplast displacements. Pulses of 0.1s and 0.2s of fluence rate saturating the avoidance response lead to transient chloroplast accumulation. Longer pulses (up to 20s) trigger a biphasic response, namely transient avoidance followed by transient accumulation. This work presents a detailed study of transient chloroplast responses in Arabidopsis. Phototropin mutants display altered chloroplast movements as compared with the wild type: phot1 is characterized by weaker responses, while phot2 exhibits enhanced chloroplast accumulation, especially after 0.1s and 0.2s pulses. To determine the cause of these differences, the abundance and phosphorylation levels of both phototropins, as well as the interactions between phototropin molecules are examined. The formation of phototropin homo- and heterocomplexes is the most plausible explanation of the observed phenomena. The physiological consequences of this interplay are discussed, suggesting the universal character of this mechanism that fine-tunes plant reactions to blue light. Additionally, responses in mutants of different protein phosphatase 2A subunits are examined to assess the role of protein phosphorylation in signaling of chloroplast movements.


Assuntos
Cloroplastos/fisiologia , Fototropinas/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Luz , Fototropinas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
16.
Plant Physiol Biochem ; 105: 271-281, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27208503

RESUMO

The aim of this study was to analyze the metabolism of storage materials in germinating tomato (Solanum lycopersicum) seeds and to determine whether it is regulated by light via phytochromes. Wild type, single and multiple phytochrome A, B1 and B2 mutants were investigated. Imbibed seeds were briefly irradiated with far-red or far-red followed by red light, and germinated in darkness. Triacylglycerols and starch were quantified using biochemical assays in germinating seeds and seedlings during the first 5 days of growth. To investigate the process of fat-carbohydrate transformation, the activity of the glyoxylate cycle was assessed. Our results confirm the role of phytochrome in the control of tomato seed germination. Phytochromes A and B2 were shown to play specific roles, acting antagonistically in far-red light. While the breakdown of triacylglycerols proceeded independently of light, phytochrome control was visible in the next stages of the lipid-carbohydrate transformation. The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were regulated by phytochrome(s). This was reflected in a greater increase of starch content during seedling growth in response to additional red light treatment. This study is the first attempt to build a comprehensive image of storage material metabolism regulation by light in germinating dicotyledonous seeds.


Assuntos
Germinação/efeitos da radiação , Luz , Sementes/embriologia , Solanum lycopersicum/efeitos da radiação , Transporte Biológico/efeitos da radiação , Glioxilatos/metabolismo , Lipídeos , Solanum lycopersicum/genética , Mutação/genética , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Proteínas de Plantas/metabolismo , Plântula/metabolismo , Plântula/efeitos da radiação , Sementes/metabolismo , Amido/metabolismo
17.
J Exp Bot ; 67(13): 3953-64, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26957564

RESUMO

Calcium is involved in the signal transduction pathway from phototropins, the blue light photoreceptor kinases which mediate chloroplast movements. The chloroplast accumulation response in low light is controlled by both phot1 and phot2, while only phot2 is involved in avoidance movement induced by strong light. Phototropins elevate cytosolic Ca(2+) after activation by blue light. In higher plants, both types of chloroplast responses depend on Ca(2+), and internal calcium stores seem to be crucial for these processes. Yet, the calcium signatures generated after the perception of blue light by phototropins are not well understood. To characterize the localization of calcium in Arabidopsis mesophyll cells, loosely bound (exchangeable) Ca(2+) was precipitated with potassium pyroantimonate and analyzed by transmission electron microscopy followed by energy-dispersive X-ray microanalysis. In dark-adapted wild-type Arabidopsis leaves, calcium precipitates were observed at the cell wall, where they formed spherical structures. After strong blue light irradiation, calcium at the apoplast prevailed, and bigger, multilayer precipitates were found. Spherical calcium precipitates were also detected at the tonoplast. After red light treatment as a control, the precipitates at the cell wall were smaller and less numerous. In the phot2 and phot1phot2 mutants, calcium patterns were different from those of wild-type plants. In both mutants, no elevation of calcium after blue light treatment was observed at the cell periphery (including the cell wall and a fragment of cytoplasm). This result confirms the involvement of phototropin2 in the regulation of Ca(2+) homeostasis in mesophyll cells.


Assuntos
Arabidopsis/metabolismo , Cálcio/metabolismo , Cloroplastos/metabolismo , Luz , Células do Mesofilo/metabolismo , Microanálise por Sonda Eletrônica
18.
Plant Sci ; 239: 238-49, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26398808

RESUMO

Chloroplast movements in Arabidopsis thaliana are controlled by two blue light photoreceptors, phototropin1 and phototropin2. Under weak blue light chloroplasts gather at cell walls perpendicular to the direction of incident light. This response, called chloroplast accumulation, is redundantly regulated by both phototropins. Under strong blue light chloroplasts move to cell walls parallel to the direction of incident light, this avoidance response being solely dependent on phototropin2. Temperature is an important factor in modulating chloroplast relocations. Here we focus on temperature effects in Arabidopsis leaves. At room temperature, under medium blue light chloroplasts start to move to cell walls parallel to the light direction and undergo a partial avoidance response. In the same conditions, at low temperatures the avoidance response is strongly enhanced-chloroplasts behave as if they were responding to strong light. Higher sensitivity of avoidance response is correlated with changes in gene expression. After cold treatment, in darkness, the expression of phototropin1 is down-regulated, while phototropin2 levels are up-regulated. The motile system of chloroplasts in Arabidopsis is more sensitive to blue light at low temperatures, similar to other species studied before. The physiological role of the cold-enhancement of the avoidance response is explained in the context of phototropin levels, photochemical activities and signaling in the cell.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Cloroplastos/metabolismo , Fosfoproteínas/genética , Temperatura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Temperatura Baixa , Temperatura Alta , Luz , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases
19.
PLoS One ; 10(2): e0116840, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25679502

RESUMO

During asthma development, differentiation of epithelial cells and fibroblasts towards the contractile phenotype is associated with bronchial wall remodeling and airway constriction. Pathological fibroblast-to-myofibroblast transition (FMT) can be triggered by local inflammation of bronchial walls. Recently, we have demonstrated that human bronchial fibroblasts (HBFs) derived from asthmatic patients display some inherent features which facilitate their FMT in vitro. In spite of intensive research efforts, these properties remain unknown. Importantly, the role of undifferentiated HBFs in the asthmatic process was systematically omitted. Specifically, biomechanical properties of undifferentiated HBFs have not been considered in either FMT or airway remodeling in vivo. Here, we combine atomic force spectroscopy with fluorescence microscopy to compare mechanical properties and actin cytoskeleton architecture of HBFs derived from asthmatic patients and non-asthmatic donors. Our results demonstrate that asthmatic HBFs form thick and aligned 'ventral' stress fibers accompanied by enlarged focal adhesions. The differences in cytoskeleton architecture between asthmatic and non-asthmatic cells correlate with higher elastic modulus of asthmatic HBFs and their increased predilection to TGF-ß-induced FMT. Due to the obvious links between cytoskeleton architecture and mechanical equilibrium, our observations indicate that HBFs derived from asthmatic bronchi can develop considerably higher static tension than non-asthmatic HBFs. This previously unexplored property of asthmatic HBFs may be potentially important for their myofibroblastic differentiation and bronchial wall remodeling during asthma development.


Assuntos
Asma/patologia , Brônquios/citologia , Brônquios/patologia , Módulo de Elasticidade , Fibroblastos/citologia , Fibroblastos/patologia , Adulto , Idoso , Remodelação das Vias Aéreas/efeitos dos fármacos , Estudos de Casos e Controles , Diferenciação Celular/efeitos dos fármacos , Módulo de Elasticidade/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Adesões Focais/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/patologia , Fibras de Estresse/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia
20.
Exp Dermatol ; 23(11): 813-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25180917

RESUMO

The relationship between melanin pigmentation and metastatic phenotype of melanoma cells is an intricate issue, which needs to be unambiguously determined to fully understand the process of metastasis of malignant melanoma. Despite significant research efforts undertaken to solve this problem, the outcomes are far from being satisfying. Importantly, none of the proposed explanations takes into consideration biophysical aspects of the phenomenon such as cell elasticity. Recently, we have demonstrated that melanin granules dramatically modify elastic properties of pigmented melanoma cells. This prompted us to examine the mechanical effects of melanosomes on the transmigration abilities of melanoma cells. Here, we show for the first time that melanin granules inhibit transmigration abilities of melanoma cells in a number of granules dependent manner. Moreover, we demonstrate that the inhibitory effect of melanosomes is mechanical in nature. Results obtained in this study demonstrate that cell elasticity may play a key role in the efficiency of melanoma cells spread in vivo. Our findings may also contribute to better understanding of the process of metastasis of malignant melanoma.


Assuntos
Melanoma/patologia , Melanossomas/metabolismo , Neoplasias Cutâneas/patologia , Pele/citologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Elasticidade , Espectroscopia de Ressonância de Spin Eletrônica , Gelatina/química , Humanos , Melaninas/metabolismo , Melanócitos/patologia , Melanoma/metabolismo , Microscopia Confocal , Metástase Neoplásica , Fenótipo , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Fenômenos Fisiológicos da Pele , Pigmentação da Pele
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...