Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; : 115113, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878973

RESUMO

Neonatal hypoxic-ischemic (HI) brain injury leads to cognitive impairments including social communication disabilities. Current treatments do not sufficiently target these impairments, therefore new tools are needed to examine social communication in models for neonatal brain injury. Ultrasonic vocalizations (USVs) during early life show potential as a measurement for social development and reflect landmark developmental stages in neonatal mice. However, changes in USV emission early after HI injury have not been found yet. Our current study examines USV patterns and classes in the first 3 days after HI injury. C57Bl/6 mice were subjected to HI on postnatal day (P)9 and USVs were recorded between P10 and P12. Audio files were analyzed using the VocalMat automated tool. HI-injured mice emitted less USVs, for shorter durations, and at a higher frequency compared to control (sham-operated) littermates. The HI-induced alterations in USVs were most distinct at P10 and in the frequency range of 50-75kHz. At P10 HI-injured mouse pups also produced different ratios of USV class types compared to control littermates. Moreover, alterations in the duration and frequency were specific to certain USV classes in HI animals compared to controls. Injury in the striatum and hippocampus contributed most to alterations in USV communication after HI. Overall, neonatal HI injury leads to USV alterations in newborn mice which could be used as a tool to study early HI-related social communication deficits.

2.
Stem Cell Res Ther ; 15(1): 134, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715091

RESUMO

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.


Assuntos
Administração Intranasal , Quimiocina CXCL10 , Hipóxia-Isquemia Encefálica , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Animais , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Hipóxia-Isquemia Encefálica/terapia , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Camundongos , Feminino , Masculino , Animais Recém-Nascidos , Movimento Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...