Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Express ; 30(14): 25219-25233, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36237057

RESUMO

We report net gain measurements at room temperature in Al0.07Ga0.93N/GaN 10-period multi-quantum well layers emitting at 367 nm, using the variable stripe length method. The separate confinement heterostructure was designed targeting electron-beam pumped lasing at 10 kV. The highest net gain value was 131 cm-1, obtained at the maximum pumping power density of the experimental setup (743 kW/cm2). The net gain threshold was attained at 218 kW/cm2 using 193 nm optical pumping. From these experiments, we predict an electron-beam-pumped lasing threshold of 370 kW/cm2 at room temperature, which is compatible with the use of compact cathodes (e.g. carbon nanotubes). In some areas of the sample, we observed an anomalous amplification of the photoluminescence intensity that occurs for long stripe lengths (superior to 400 µm) and high pumping power (superior to 550 kW/cm2), leading to an overestimation of the net gain value. We attribute such a phenomenon to the optical feedback provided by the reflection from cracks, which were created during the epitaxial growth due to the strong lattice mismatch between different layers.

2.
Sci Adv ; 7(18)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33910906

RESUMO

Vision is usually assumed to be sensitive to the light intensity and spectrum but not to its spectral phase. However, experiments performed on retinal proteins in solution showed that the first step of vision consists in an ultrafast photoisomerization that can be coherently controlled by shaping the phase of femtosecond laser pulses, especially in the multiphoton interaction regime. The link between these experiments in solution and the biological process allowing vision was not demonstrated. Here, we measure the electric signals fired from the retina of living mice upon femtosecond multipulse and single-pulse light stimulation. Our results show that the electrophysiological signaling is sensitive to the manipulation of the light excitation on a femtosecond time scale. The mechanism relies on multiple interactions with the light pulses close to the conical intersection, like pump-dump (photoisomerization interruption) and pump-repump (reverse isomerization) processes. This interpretation is supported both experimentally and by dynamics simulations.


Assuntos
Luz , Animais , Camundongos
3.
ACS Nano ; 12(10): 10310-10316, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30299926

RESUMO

When reducing the size of a material from bulk down to nanoscale, the enhanced surface-to-volume ratio and the presence of interfaces make the properties of nano-objects very sensitive not only to confinement effects but also to their local environment. In the optical domain, the latter dependence can be exploited to tune the plasmonic response of metal nanoparticles by controlling their surroundings, notably applying high pressures. To date, only a few optical absorption experiments have demonstrated this feasibility, on ensembles of metal nanoparticles in a diamond anvil cell. Here, we report a nontrivial combination between a spatial modulation spectroscopy microscope and an ultraflat diamond anvil cell, allowing us to quantitatively investigate the high-pressure optical extinction spectrum of an individual nano-object. A large tuning of the surface plasmon resonance of a gold nanobipyramid is experimentally demonstrated up to 10 GPa, in quantitative agreement with finite-element simulations and an analytical model disentangling the impact of metal and local environment dielectric modifications. High-pressure optical characterizations of single nanoparticles allow for the accurate investigation and modeling of size, strain, and environment effects on physical properties of nano-objects and also enable fine-tuned applications in nanocomposites, nanoelectromechanical systems, or nanosensing devices.

4.
Nat Phys ; 14(7): 695-700, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30079094

RESUMO

Light can be used to modify and control properties of media, as in the case of electromagnetically induced transparency or, more recently, for the generation of slow light or bright coherent XUV and X-ray radiation. Particularly unusual states of matter can be created by light fields with strengths comparable to the Coulomb field that binds valence electrons in atoms, leading to nearly-free electrons oscillating in the laser field and yet still loosely bound to the core [1,2]. These are known as Kramers-Henneberger states [3], a specific example of laser-dressed states [2]. Here, we demonstrate that these states arise not only in isolated atoms [4,5], but also in rare gases, at and above atmospheric pressure, where they can act as a gain medium during laser filamentation. Using shaped laser pulses, gain in these states is achieved within just a few cycles of the guided field. The corresponding lasing emission is a signature of population inversion in these states and of their stability against ionization. Our work demonstrates that these unusual states of neutral atoms can be exploited to create a general ultrafast gain mechanism during laser filamentation.

6.
Struct Dyn ; 4(6): 061507, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29308419

RESUMO

This review provides a comprehensive overview of the structural dynamics in topical gas- and condensed-phase systems on multiple length and time scales. Starting from vibrationally induced dissociation of small molecules in the gas phase, the question of vibrational and internal energy redistribution through conformational dynamics is further developed by considering coupled electron/proton transfer in a model peptide over many orders of magnitude. The influence of the surrounding solvent is probed for electron transfer to the solvent in hydrated I-. Next, the dynamics of a modified PDZ domain over many time scales is analyzed following activation of a photoswitch. The hydration dynamics around halogenated amino acid side chains and their structural dynamics in proteins are relevant for iodinated TyrB26 insulin. Binding of nitric oxide to myoglobin is a process for which experimental and computational analyses have converged to a common view which connects rebinding time scales and the underlying dynamics. Finally, rhodopsin is a paradigmatic system for multiple length- and time-scale processes for which experimental and computational methods provide valuable insights into the functional dynamics. The systems discussed here highlight that for a comprehensive understanding of how structure, flexibility, energetics, and dynamics contribute to functional dynamics, experimental studies in multiple wavelength regions and computational studies including quantum, classical, and more coarse grained levels are required.

7.
Nanotechnology ; 27(21): 214001, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27087057

RESUMO

We study the injection mechanism of a single electron from a static quantum dot into a moving quantum dot. The moving quantum dots are created with surface acoustic waves (SAWs) in a long depleted channel. We demonstrate that the injection process is characterized by an activation law with a threshold that depends on the SAW amplitude and on the dot-channel potential gradient. By sufficiently increasing the SAW modulation amplitude, we can reach a regime where the transfer has unity probability and is potentially adiabatic. This study points to the relevant regime to use moving dots in quantum information protocols.

8.
J Am Chem Soc ; 138(13): 4401-7, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-26974184

RESUMO

Charge transfer mechanisms lay at the heart of chemistry and biochemistry. Proton coupled electron transfers (PCET) are central in biological processes such as photosynthesis and in the respiratory chain, where they mediate long-range charge transfers. These mechanisms are normally difficult to harness experimentally due to the intrinsic complexity of the associated biological systems. Metal-peptide cations experience both electron and proton transfers upon photoexcitation, proving an amenable model system to study PCET. We report on a time-resolved experiment designed to follow this dual charge transfer kinetics in [HG3W+Ag](+) (H = histidine, G = glycine, W = tryptophan) on time scales ranging from femtoseconds to milliseconds. While electron transfer completes in less than 4 ps, it triggers a proton transfer lasting over hundreds of microseconds. Molecular dynamics simulations show that conformational dynamic plays an important role in slowing down this reaction. This combined experimental and computational approach provides a view of PCET as a single phenomenon despite its very wide time-domain span.

9.
Nature ; 477(7365): 435-8, 2011 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-21938064

RESUMO

Electrons in a metal are indistinguishable particles that interact strongly with other electrons and their environment. Isolating and detecting a single flying electron after propagation, in a similar manner to quantum optics experiments with single photons, is therefore a challenging task. So far only a few experiments have been performed in a high-mobility two-dimensional electron gas in which the electron propagates almost ballistically. In these previous works, flying electrons were detected by means of the current generated by an ensemble of electrons, and electron correlations were encrypted in the current noise. Here we demonstrate the experimental realization of high-efficiency single-electron source and detector for a single electron propagating isolated from the other electrons through a one-dimensional channel. The moving potential is excited by a surface acoustic wave, which carries the single electron along the one-dimensional channel at a speed of 3 µm ns(-1). When this quantum channel is placed between two quantum dots several micrometres apart, a single electron can be transported from one quantum dot to the other with quantum efficiencies of emission and detection of 96% and 92%, respectively. Furthermore, the transfer of the electron can be triggered on a timescale shorter than the coherence time T(2)* of GaAs spin qubits. Our work opens new avenues with which to study the teleportation of a single electron spin and the distant interaction between spatially separated qubits in a condensed-matter system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...