Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 6(4): 3007-17, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22432786

RESUMO

The formation of true single-molecule complexes between organic ligands and nanoparticles is challenging and requires careful design of molecules with size, shape, and chemical properties tailored for the specific nanoparticle. Here we use computer simulations to describe the atomic-scale structure, dynamics, and energetics of ligand-mediated synthesis and interlinking of 1 nm gold clusters. The models help explain recent experimental results and provide insight into how multidentate thioether dendrimers can be employed for synthesis of true single-ligand-nanoparticle complexes and also nanoparticle-molecule-nanoparticle "dumbbell" nanostructures. Electronic structure calculations reveal the individually weak thioether-gold bonds (325 ± 36 meV), which act collectively through the multivalent (multisite) anchoring to stabilize the ligand-nanoparticle complex (∼7 eV total binding energy) and offset the conformational and solvation penalties involved in this "wrapping" process. Molecular dynamics simulations show that the dendrimer is sufficiently flexible to tolerate the strained conformations and desolvation penalties involved in fully wrapping the particle, quantifying the subtle balance between covalent anchoring and noncovalent wrapping in the assembly of ligand-nanoparticle complexes. The computed preference for binding of a single dendrimer to the cluster reveals the prohibitively high dendrimer desolvation barrier (1.5 ± 0.5 eV) to form the alternative double-dendrimer structure. Finally, the models show formation of an additional electron transfer channel between nitrogen and gold for ligands with a central pyridine unit, which gives a stiff binding orientation and explains the recently measured larger interparticle distances for particles synthesized and interlinked using linear ligands with a central pyridine rather than a benzene moiety. The findings stress the importance of organic-inorganic interactions, the control of which is central to the rational engineering and eventual large-scale production of functional building blocks for nano(bio)electronics.


Assuntos
Dendrímeros/química , Ouro/química , Nanoestruturas/química , Nanotecnologia/métodos , Transporte de Elétrons , Modelos Moleculares , Conformação Molecular , Termodinâmica
2.
Small ; 7(7): 920-9, 2011 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-21394907

RESUMO

The directed assembly of gold nanoparticles is essential for their use in many kinds of applications, such as electronic devices, biological labels, and sensors. Herein an atomic alteration in the molecular structure of ligand-stabilized gold nanoparticles that can shift the interparticle distance up to 1 nm upon covalent coupling to organic-inorganic superstructures is presented. Gold nanoparticles are stabilized by two octadentate thioether ligands and have a mean diameter of 1.1 nm. The ligands contain a central rigid rod varying in length and terminally functionalized with a protected acetylene. The two peripheral functional groups on each particle enable the directed assembly of nanoparticles to dimers, trimers, and tetramers by oxidative acetylene coupling. This is a wet chemical protocol resulting in covalently bound nanoparticles. These organic-inorganic hybrid superstructures are analyzed by transmission electron microscopy, small angle X-ray scattering, and UV/vis spectroscopy. The focus of the comparison here is the subunit, which is anchoring the bridgehead, either a pyridine or benzene moiety. The pyridine-based ligands reflect the calculated length of the rigid-rod spacer in their interparticle distances in the obtained hybrid structures. This suggests a perpendicular arrangement that results from the coordination of the pyridine's lone pair to the gold surface. An atomic variation in the ligand's center leads to smaller interparticle distances in the case of hybrid structures obtained from benzene ligands. This large difference in the spatial arrangement suggests a tangential arrangement of the interparticle bridging structure in the latter case. Consequently a rather flat arrangement parallel to the particle surface must be assumed for the central benzene unit of the benzene-based ligand.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Benzeno/química , Ligantes , Microscopia Eletrônica de Transmissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...