Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Eur J Pharm Biopharm ; 194: 131-147, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101489

RESUMO

Monoclonal antibodies-based medicines are widely used in the treatment of different diseases. These medicines are very sensitive to exposure to different environmental conditions and their handling in hospitals may affect their safety and efficacy. This is the case for pembrolizumab (Keytruda®, 25 mg/mL), for which there is not yet much information on its risk behaviour associated with routine handling or unintentional mishandling. Here we performed a wider physicochemical and functional analysis of pembrolizumab medicine including controlled degradation studies: heat, freeze/thaw, agitation, accelerated light exposure and high hypertonic solution. After that, the samples were analysed by a set of analytical techniques to evaluated critical quality attributes: Far-UV CD, IT-FS, DLS, RP/UHPLC(UV)-MS, SE/UHPLC(UV), RP/UHPLC(UV)-MS/MS and ELISA. The results provide an in-depth understanding of the biochemical and biophysical properties of pembrolizumab, showing that the medicine is affected by accelerated light exposure and temperature of 60 °C, demonstrated by the detection of non-natural dimers and HMWS. Light exposure also revealed different isoform profile and increase in oxidations. Regarding functionality by means of the interaction antigen-antibody binding, all the stressors promoted a decrease in pembrolizumab capacity to bind to PD-1 receptor, although the biological activity remained still high for all of them, being 60 °C and accelerated light exposure the most affected.


Assuntos
Anticorpos Monoclonais Humanizados , Espectrometria de Massas em Tandem , Anticorpos Monoclonais/química , Temperatura
2.
Vaccines (Basel) ; 11(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-38005967

RESUMO

Comirnaty™ and Spikevax™ were the first vaccines approved for human use based on modified non-replicating mRNA lipophilic nanoparticle (mRNA-LNP) technology, with great success in the treatment of COVID-19. They have been used massively worldwide. One of the major inconveniences of these vaccines is related to pharmaceutical stability issues. Proper transportation, storage, and in-use handling before administration to patients are critical steps since failures can potentially reduce potency. In this research, the in-use stability of Comirnaty™ and Spikevax™ clinical samples was analysed and the results were compared. As changes in the size of the mRNA-LNPs are related to potency, these modifications were analysed by qualitative Dynamic Light Scattering (DLS) as a stability-indicating method for control and stressed vaccine samples. Strong stress factors (accelerated light irradiation, manual shaking, and vortex vibration) and conditions that mimic in-use handling (exposure to natural light and room temperature, repeated cycles of injections, and 24 h storage in syringes) were checked. The morphology of the mRNA-LNPs was analysed by Transmission Electron Microscopy (TEM) to better interpret and support the DLS results. Although the two vaccines are based on the same mRNA-LNP technology, the results demonstrate that they are characterised by very different particle size profiles and behaviours against different handling/stress conditions.

3.
Eur J Pharm Biopharm ; 184: 103-115, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36669672

RESUMO

Teduglutide (Revestive®) is a glucagon-like peptide-2 analogue used for the treatment of short bowel syndrome, a rare life-threatening condition in which the amount of functional gut is too short to enable proper absorption of nutrients and fluids. During handling prior to administration to the patient in hospital, it is possible that peptide-based medicines may be exposed to environmental stress conditions that could affect their quality. It is therefore essential to carry out stress testing studies to evaluate how such medicines respond to these stresses. For this reason, in this paper we present a strategy for a comprehensive analytical characterization of a peptide and a stress testing study in which it was subjected to various stress conditions: heating at 40 °C and 60 °C, light exposure and shaking. Several complementary analytical techniques were used throughout this study: Far UV circular dichroism, intrinsic protein fluorescence spectroscopy, dynamic light scattering, size-exclusion chromatography and intact and peptide mapping reverse-phase chromatography coupled to mass spectrometry. To the best of our knowledge, this is the first study to offer an in-depth description of the chemical structure of teduglutide peptide and its physicochemical characteristics after stress stimuli were applied to the reconstituted medicine Revestive®.


Assuntos
Peptídeos , Síndrome do Intestino Curto , Humanos , Síndrome do Intestino Curto/tratamento farmacológico , Peptídeo 2 Semelhante ao Glucagon/uso terapêutico , Espectrometria de Massas , Fármacos Gastrointestinais
4.
J Pharm Biomed Anal ; 221: 115064, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36152491

RESUMO

Teduglutide, the active ingredient of the medicine Revestive® (5 mg), is a recombinant therapeutic peptide that mimics the effects of the endogenous glucagon-like peptide 2 (GLP-2). It stimulates intestinal growth, adaptation and function in patients with Short Bowel Syndrome who are dependent on parenteral nutrition. The Summary of Product Characteristics recommends immediate use of the reconstituted solutions and the discarding of any subsequent surplus. This study aims to carry out a long-term stability study that reproduces hospital conditions of use which provide sound evidence regarding the use of teduglutide surplus beyond the Summary Product Characteristics recommendations. We conducted a stability study of teduglutide solutions prepared from a 5 mg vial of Revestive®. Some of the solutions were stored in their original vial after reconstitution, while others were repackaged in plastic syringes to evaluate their physicochemical stability over time. For this purpose, we applied a set of previously validated analytical methodologies to evaluate the main critical quality attributes of teduglutide, i.e., primary (including post-tralational modifications), secondary and tertiary structures, aggregates, particulate, concentration and pH. The results indicate that the solutions maintain high physicochemical stability over time, regardless of the storage temperature (4ºC or -20ºC) or the storage container (vials or syringes). This research provides new data on the stability of Revestive® that will be of great value to hospital pharmacists. This comprehensive assessment of the physicochemical long-term stability of TGT has demonstrated that under the storage conditions and over the period studied here, the medicine maintains its quality, efficacy and safety profiles.


Assuntos
Peptídeo 2 Semelhante ao Glucagon , Síndrome do Intestino Curto , Fármacos Gastrointestinais , Peptídeo 2 Semelhante ao Glucagon/uso terapêutico , Humanos , Peptídeos/farmacologia , Plásticos , Síndrome do Intestino Curto/tratamento farmacológico
5.
Pharmaceutics ; 14(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456527

RESUMO

Nivolumab, formulated in the medicine Opdivo® (10 mg/mL), is a therapeutic monoclonal antibody (mAb) used in the treatment of different types of cancer. Currently, there is insufficient knowledge about the behaviour of this protein with regards to the risk associated with its routine handling or unintentional mishandling, or when subjected to stress conditions in hospitals. These conditions can be simulated in forced degradation studies, which provide an in-depth understanding of the biophysical and biochemical properties of mAbs. In this study, we carried out a physicochemical and functional characterisation of nivolumab, which was subjected to various stress conditions: heat, freeze/thaw cycles, agitation, light exposure and high hypertonic solution. We used a wide range of analytical techniques: Far-UV CD, IT-FS, DLS, SE/UHPLC(UV)-[Native]MS, and ELISA. The results show that exposure to light was the stress test with the greatest impact on the samples, revelling the formation of non-natural dimers and a different isoform profile. In addition, nivolumab (Opdivo®) demonstrated stability up to 60 °C (1 h). As regards functionality all the nivolumab (Opdivo®) stressed samples were found to be stable except for those subjected to light and agitation, and to a lesser extent, those subjected to FTC 5 and NaCl stresses.

6.
Vaccines (Basel) ; 9(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073559

RESUMO

Major efforts have been made in the search for effective treatments since the outbreak of the COVID-19 infection in December 2019. Extensive research has been conducted on drugs that are already available and new treatments are also under development. Within this context, therapeutic monoclonal antibodies (mAbs) have been the subject of widespread investigation focusing on two target-based groups, i.e., non-SARS-CoV-2 specific mAbs, that target immune system responses, and SARS-CoV-2 specific mAbs, designed to neutralize the virus protein structure. Here we review the latest literature about the use of mAbs in order to describe the state of the art of the clinical trials and the benefits of using these biotherapeutics in the treatment of COVID-19. The clinical trials considered in the present review include both observational and randomized studies. We begin by presenting the studies conducted using non-SARS-CoV-2 specific mAbs for treating different immune disorders that were already on the market. Within this group of mAbs, we focus particularly on anti-IL-6/IL-6R. This is followed by a discussion of the studies on SARS-CoV-2 specific mAbs. Our findings indicate that SARS-CoV-2 specific mAbs are significantly more effective than non-specific ones.

7.
J Pharm Biomed Anal ; 203: 114209, 2021 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-34153938

RESUMO

A range of biopharmaceutical products are used to target Vascular Endothelial Growth Factor (VEGF), including Eylea® (aflibercept, AFL) and Zaltrap® (ziv-aflibercept, ziv-AFL). The first is indicated for ophthalmological diseases such as neovascular (wet) age-related macular degeneration, while the second is used in the treatment of metastatic colorectal cancer. The stability of AFL in prefilled syringes has been widely studied; however, no research has yet been done on the stability of ziv-AFL in polyolefin infusion bags. Therefore, the purpose of the present research is to evaluate the stability of ziv-AFL (Zaltrap®) clinical solutions prepared under aseptic conditions in polyolefin infusion bags at two different concentrations, i.e. 4.0 and 0.6 mg/mL, and stored refrigerated in darkness at 2-8 °C for 14 days. With that aim, the ziv-AFL clinical solutions were assessed by analysing changes in its physicochemical and functional properties. The distribution of the particulates was studied over a range of 0.001-10 µm by Dynamic Light Scattering (DLS); oligomers were analysed by Size-Exclusion High-Performance Chromatography with Diode Array Detection (SE/HLPC-DAD); the secondary structure of the protein was studied by far UV Circular Dichroism (CD) and the tertiary structure by Intrinsic Tryptophan Fluorescence (IT-F) and Intrinsic Protein Fluorescence (IP-F); charge variants were assessed by Strong Cation Exchange Ultra-High-Performance Chromatography with UV detection (SCX/UHPLC-UV); functionality was evaluated by ELISA by measuring the biological activity as manifested in the extension of the immunological reaction of the ziv-AFL with its antigen (VEGF). Neither aggregation nor oligomerization were detected by the techniques mentioned above. Secondary and tertiary structures remained unchanged over the 14-day period, as did charge variants. The functionality observed initially was maintained along time. Therefore, it could be proposed that the ziv-AFL clinical solutions studied showed great physicochemical and functional stability over a period of two weeks, regardless of the concentration, i.e. 4 or 0.6 mg/mL.


Assuntos
Receptores de Fatores de Crescimento do Endotélio Vascular , Fator A de Crescimento do Endotélio Vascular , Infusões Parenterais , Proteínas Recombinantes de Fusão
8.
J Pharm Anal ; 10(6): 532-545, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32837741

RESUMO

COVID-19, a disease caused by the novel coronavirus SARS-CoV-2, has produced a serious emergency for global public health, placing enormous stress on national health systems in many countries. Several studies suggest that cytokine storms (interleukins) may play an important role in severe cases of COVID-19. Neutralizing key inflammatory factors in cytokine release syndrome (CRS) could therefore be of great value in reducing the mortality rate. Tocilizumab (TCZ) in its intravenous (IV) form of administration -RoActemra® 20 mg/mL (Roche)-is indicated for treatment of severe CRS patients. Preliminary investigations have concluded that inhibition of IL-6 with TCZ appears to be efficacious and safe, with several ongoing clinical trials. This has led to a huge increase in demand for IV TCZ for treating severe COVID-19 patients in hospitals, which has resulted in drug shortages. Here, we present a comparability study assessing the main critical physicochemical attributes of TCZ solutions used for infusion, at 6 mg/mL and 4 mg/mL, prepared from RoActemra® 20 mg/mL (IV form) and from RoActemra® 162 mg (0.9 mL solution pre-filled syringe, subcutaneous(SC) form), to evaluate the use of the latter for preparing clinical solutions required for IV administration, so that in a situation of shortage of the IV medicine, the SC form could be used to prepare the solutions for IV delivery of TCZ. It is important to remember that during the current pandemic all the medicines are used off-label, since none of them has yet been approved for the treatment of COVID-19.

9.
Sci Rep ; 10(1): 2675, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32060315

RESUMO

Aflibercept (AFL) is an Fc fusion protein used in the treatment of colorectal cancers and different ophthalmological diseases. There are two medicines in which AFL is the active substance: Zaltrap and Eylea, referred as ziv-AFL and AFL respectively. No proper accelerated degradation studies were published on either AFL or ziv-AFL. These studies are essential during research, development and manufacturing stages. Here, we characterized ziv-AFL and submitted it to different stress conditions: light, 60 °C, freeze-thaw cycles, changes in pH, high hypertonic solution and strong denaturing conditions. We used an array of techniques to detect aggregation (SE-HPLC/DAD and DLS), changes in secondary structure (Far-UV circular dichroism), changes in conformation or tertiary structure (Intrinsic tryptophan fluorescence) and alterations in functionality (ELISA). Results indicate that aggregation is common degradation pathway. Two different types of aggregates were detected: dimers and high molecular weight aggregates attributed to ß-amyloid-like structures. Secondary structure was maintained in most of the stress tests, while conformation was altered by almost all the tests except for the freeze-thaw cycles. Functionality, evaluated by its immunochemical reaction with VEGF, was found to be stable but with decrease when exposed to light and with likely partial inactivation of the drug when pH was altered.


Assuntos
Inibidores da Angiogênese/química , Estabilidade de Medicamentos , Receptores de Fatores de Crescimento do Endotélio Vascular/química , Proteínas Recombinantes de Fusão/química , Inibidores da Angiogênese/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Congelamento/efeitos adversos , Temperatura Alta/efeitos adversos , Humanos , Concentração de Íons de Hidrogênio , Soluções Hipertônicas/efeitos adversos , Injeções Intravítreas , Luz/efeitos adversos , Receptores de Fatores de Crescimento do Endotélio Vascular/uso terapêutico , Proteínas Recombinantes de Fusão/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/genética
10.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-883485

RESUMO

COVID-19, a disease caused by the novel coronavirus SARS-CoV-2, has produced a serious emergency for global public health, placing enormous stress on national health systems in many countries. Several studies suggest that cytokine storms (interleukins) may play an important role in severe cases of COVID-19. Neutralizing key inflammatory factors in cytokine release syndrome (CRS) could therefore be of great value in reducing the mortality rate. Tocilizumab (TCZ) in its intravenous (IV) form of administration-RoActemra? 20 mg/mL (Roche)-is indicated for treatment of severe CRS patients. Preliminary in-vestigations have concluded that inhibition of IL-6 with TCZ appears to be efficacious and safe, with several ongoing clinical trials. This has led to a huge increase in demand for IV TCZ for treating severe COVID-19 patients in hospitals, which has resulted in drug shortages. Here, we present a comparability study assessing the main critical physicochemical attributes of TCZ solutions used for infusion, at 6 mg/mL and 4 mg/mL, prepared from RoActemra? 20 mg/mL (IV form) and from RoActemra? 162 mg (0.9 mL solution pre-filled syringe, subcutaneous(SC) form), to evaluate the use of the latter for preparing clinical solutions required for IV administration, so that in a situation of shortage of the IV medicine, the SC form could be used to prepare the solutions for IV delivery of TCZ. It is important to remember that during the current pandemic all the medicines are used off-label, since none of them has yet been approved for the treatment of COVID-19.

11.
BioDrugs ; 33(2): 193-205, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30875076

RESUMO

BACKGROUND: There are two products in which infliximab is the active pharmaceutical ingredient. These are Remicade® (INF; reference product) and Remsima™/Inflectra™ (CT-P13; infliximab biosimilar). Remsima™/Inflectra™ are bioidentical products. Different recommendations have been made for the clinical solutions of each brand (Remicade® or Remsima™/Inflectra™) despite the manufacturer of the biosimilar claiming high levels of similarity to the innovator. OBJECTIVE: The objective of this study was to assess and compare stability against degradation and over time of different clinical infliximab solutions prepared from Remicade® and from Remsima™/Inflectra™ using a suitable set of characterization methods in line with the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH) recommendations. METHODS: Reconstituted solutions of INF and CT-P13 and dilutions as used in hospital were stored in glass vials (10 and 2 mg/mL) or in polyolefin infusion bags (0.4 mg/mL) refrigerated between 2 and 8 °C for 2 weeks. Regarding the physicochemical properties, the distribution of the particulates were studied over a range of 0.001-1 µm by dynamic light scattering (DLS) and oligomers up to 8 monomer were analyzed by native size-exclusion ultra-high-performance liquid chromatography with ultraviolet (UV)-visible detection coupled to (native) mass spectrometry (SE/UHPLC-UV-(native) MS); mass spectrometry was also used to evaluate natural aggregates and isoform profile; DLS was also employed to detect gross conformational changes by tracking the hydrodynamic radius (HR). The secondary structure of the proteins was studied by far UV circular dichroism (CD). The tertiary structure was investigated by intrinsic tryptophan fluorescence (IT-F). Reverse-phase ultra-high-performance liquid chromatography with UV detection (RP/UHPLC-UV) was used to analyze intact INF and CT-P13 for quantification purposes. Functionality was evaluated via the biological activity measured by the extension of the immunological reaction of the INF and the CT-P13 with its antigen, i.e., the tumor necrosis factor-α by enzyme-linked immunosorbent assay (ELISA). RESULTS: The stress applied to INF and CT-P13 solutions showed similar levels of aggregate formation, structural variation, and chemical modifications. The only noteworthy difference between INF and CT-P13 was detected in their behavior to freeze-thaw cycles, in which CT-P13 showed slightly more robustness. INF and CT-P13 showed identical CD spectra, similar to those reported for IgG1 in which there is dominance in ß sheet secondary structures; this typical conformation remained unmodified over time in INF and CT-P13. No significant changes were detected in the tertiary structure and no aggregates process was noticed over the time studied. Polydispersity slightly increased for the most concentrated solutions, while there were no meaningful differences in the HR in the solutions over time. The concentration of INF and CT-P13 also remained constant. Differences in the native isoform MS profile were detected, as expected by the different glycosylation pattern, with no important modification over time. Functionality was maintained over the test period (60 days) and was similar in all the solutions tested, with no differences between INF and biosimilar solutions. CONCLUSIONS: High levels of similarity were noticed in the behavior of INF and CT-P13 when subjected to stress. When stored refrigerated at between 2 and 8 °C and prepared as normally used in the hospital pharmacy, all solutions showed physicochemical and functional stability for all the concentrations tested and all containers, at least for the 14-day test period.


Assuntos
Anticorpos Monoclonais/química , Medicamentos Biossimilares/química , Infliximab/química , Técnicas de Química Analítica , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...